Scrigroup - Documente si articole

Username / Parola inexistente      

Home Documente Upload Resurse Alte limbi doc  

BulgaraCeha slovacaCroataEnglezaEstonaFinlandezaFranceza


Capsicum, chillies, paprika, bird’s eye chilli - Production, properties and toxicity


+ Font mai mare | - Font mai mic

Capsicum, chillies, paprika, bird’s eye chilli

1     Introduction: classification and use

Many different varieties of the genus Capsicum are widely grown for their fruits, which may be eaten fresh, cooked, as a dried powder, in a sauce, or processed into oleoresin.1

There  are three major products traded on the world market for use in food processing: paprika, oleoresin, and dried chilli (both whole and in powdered form). Some fresh fruits and  some  fermented  mash  is  used  for  food  processing,  but  these  are  relatively  minor amounts and by necessity they are produced close to the processing facility.

The genus Capsicum belongs to the family Solanaceae. Within the genus Capsicum, five species are commonly recognized as domesticated: Capsicum annuum, C. baccatum, C. chinense, C. frutescens, and C. pubescens, while approximately 20 wild species have been  documented.  The  genus  Capsicum  shares  the  distinction  of  being  the  first  plants cultivated  in  the  New  World  with  beans  (Phaseolus  spp.),  maize  (Zea  mays  L.),  and cucurbits (Cucurbitaceae).2  They are one of the first spices used by humans anywhere in the world. Widespread geographic distribution of C. annuum and C. frutescens from the New  World  to  other  continents  occurred  in  the  sixteenth  century  via  Spanish  and Portuguese   traders,   whereas   the   other   species   are   little   distributed   outside   South America.3  Most products used commercially for food processing are C. annuum.

The  classification  system  for  this  genus  is  somewhat  confusing  in  the  literature.  In

Spain,  the  Castilian  word  ‘pimiento refers  to  any  Capsicum  species,  but  in  the  USA,

‘pimiento or  ‘pimento refers  only  to  thick-walled,  heart-shaped,  non-pungent  fruits from  the  species  C.  annuum.  The  Hungarians  call  all  C.  annuum  fruits  ‘paprika’,  but paprika is defined in the world market as a ground, red powder derived from dried fruits with the desirable colour and flavour qualities. The word ‘chile’ is the common name for any Capsicum species in Mexico, Central America and the Southwestern USA. In Asia, the  spelling  ‘chilli is  more  common  and  is  always  associated  with  highly  pungent varieties of C. annuum and C. frutescens, while the non-pungent sweet bell peppers are referred  to  as  ‘Capsicums’.  Pungent  fruits  of  all  cultivated  Capsicum  species  as  a collective  class  are  called  ‘chillies in  the  Food  and  Agriculture  Organization  (FAO) Yearbook.4  Bird’s eye chillies are grown primarily in East Africa, but they are merely

small-fruited, highly  pungent  forms of C. annuum or C. frutescens. In  this review, the following definitions will be used:

   Oleoresin a viscous liquid derived by polar solvent extraction from ground powder of any Capsicum species; there are three types of oleoresin: paprika (used for colour), red pepper (used for colour and pungency), and Capsicum (used for pungency).

   Paprika   a  ground,  bright  red,  usually  non-pungent  powder  used  primarily  for  its colour  and  flavour  in  processed foods;  all  paprika  varieties are  C. annuum;  paprika fruits are used to produce paprika oleoresin.

   Chilli any pungent variety of any Capsicum species, but primarily C. annuum; chilli varieties may be used to produce red pepper oleoresin or Capsicum oleoresin.

   Pepper(s) generic term describing the fruits of any Capsicum species, both pungent and non-pungent. Peppers are used as a colourant, flavourant, and/or as a source of pungency, depending

on the processed product. Peppers can be used fresh, dried, fermented, or as an oleoresin extract.  They  can  be  used  whole,  chopped,  coarsely  ground,  or  finely  ground,  with  or without seeds. Various types of processed products containing primarily peppers include pickled fruits, chilli sauce, chilli powder (also known as cayenne powder), crushed red pepper  flakes  (with  or  without  seeds),  fermented  mash,  paprika,  and  three  types  of oleoresin.  Other  processed  products  that  contain  a  significant  proportion  of  peppers include fresh and processed salsas, curry powders, barbecue seasonings, chili powder (a mixture of chilli powder, oregano, cumin, and garlic powder), and many other foods.5

2     Chemical structure and stability The main source of pungency in peppers is the chemical group of alkaloid compounds called capsaicinoids (CAPS), which are produced in the fruit. The atomic structure of CAPS is similar to piperine (the active component of white and black pepper, Piper nigrum) and zingerone (the active component of ginger, Zingiber officinale). Capsaicin

(C18H27NO3,  trans-8-methyl-N-vanillyl-6-nonenamide), shown in Fig. 1, is the most abundant   CAPS,   followed   by   dihydrocapsaicin,   with   minor   amounts   of nordihydrocapsaicin, homocapsaicin, homodihydrocapsaicin, and others. Capsaicin is a  white  crystalline,  fat-soluble  compound  formed  from  homovanillic  acid  that  is insoluble in water, odourless, and tasteless.3  Varieties of chilli differ widely in CAPS content.  The  amount  of  CAPS  in  a  given  variety  can  vary  depending  on  the  light intensity  and  temperature  at  which  the  plant  is  grown,  the  age  of  the  fruit,  and  the position of the fruit on the plant. The first test developed to measure pungency was the Scoville  test,  first  developed  in  1912  by  Wilbur  Scoville.6   It  measures  ‘heat’  as Scoville heat units (SHU) in a given dry weight of fruit tissue. Sweet peppers have 0

SHU, chillies with a slight bite may have 100 to 500 SHU, and the blistering habaneros have between 200,000 and 300,000. The red colour of mature pepper fruits is due to several  related  carotenoid  pigments,  including  capsanthin  (Fig.  2),  capsorubin, cryptoxanthin,  and  zeaxanthin,  which  are  present  as  fatty  acid  esters.  The  most important pigments are capsanthin and its isomer capsorubin, which make up 30–60% and 6–18%, respectively, of the total carotenoids in the fruit.7  The intensity of the red colour is primarily a function of the amount of these two pigments; the Hungarian and Spanish   varieties   used   for   paprika   have   very   high   amounts   of   capsanthin   and capsorubin compared to other varieties.7

Fig. 1    Chemical structure of capsaicin.

Fig. 2    Chemical structure of capsanthin.

CAPS in oleoresins are very stable compounds and generally do not break down, even during  processing  at  high  temperatures  and  during  long  storage  periods.  CAPS  in  dry products (fruits, powder, etc.) are not as stable as in oleoresins. The temperature at which the fruits are dried affects the CAPS content. For example, drying ripe fruits at 60sC to a final moisture content of 8% decreases CAPS content approximately 10%.8  If the fruits are held for extended periods of time at 60sC after reaching 8% moisture content as much as 50% of the CAPS may be lost.8  Once the fruits are dried, they typically lose 1–2% CAPS/month  under  cold  (   16sC)  storage,  and  even  more  when  stored  under  ambient conditions.  Ground  powder  can  lose  as  much  as  5%  CAPS/month  depending  on  the fineness of the grind and the storage temperature.8  The red colour of paprika and chilli powder, on the other hand, is not as stable as oleoresin and CAPS, and much work has been done to optimize the processing and storage conditions for dried chillies and paprika to maximize the colour intensity for the longest period of time.9-11

3      Production

Reliable  production  figures  for  paprika  and  chillies  are  difficult  to  obtain  because  the FAO Yearbook combines production figures for green bell peppers and chillies into one figure  for peppers. In 1997, the FAO reported that  there  were 1.33 million  hectares  of peppers grown, with an average yield of 12.3 t ha  1; total production was estimated at

16.4 million metric tons (MMT).4  The major pepper producing nations in terms of area are India, China, Indonesia, Ethiopia and Mexico.

3.1     Paprika production

Paprika is produced commercially in Spain, Portugal, Central Europe, Southern Africa, and  the  US,  but  Hungary  is  by  far  the  most  famous  paprika-producing  country,  with approximately 8,000 ha devoted to the crop.4,12  Many food historians believe that Turks and  Bulgarians  of  the  Ottoman  Empire  brought  peppers  to  Hungary  in  the  sixteenth

century. Kalocsa and Szeged are the main centres of paprika production. Once the fruits are harvested, they are loosely stacked in long, narrow, cylindrical mesh bags made of red plastic and allowed to ‘cure for 3–4 weeks. Then the peppers are washed, dried, crushed and  finally  ground  into  powder.  The  mill  master  selects  the  proportion  of  seeds  to  be ground with the pepper pods, to produce the desired level of pungency and colour in the paprika. During grinding, the crushed peppers are heated to release the oil in the seeds, which interacts with the pigment in the fruits to produce the intense red colour. Colour has  no  effect  on  the  pungency  of  the  paprika.  Bright  red  paprikas  may  be  sweet  or pungent.  Generally,  the  poorer-quality,  pale  red  and  brownish-coloured  paprikas  are pungent. Heat causes the natural sugar content of the fruits to caramelize slightly, which affects the taste and aroma of the paprika. During the process, if the fruits are heated too much, they will scorch. If they are not heated enough, the moisture content will be too high,  and  both  the  flavour  and  colour  will  be  affected.  Optimum  moisture  content  is

8%.12 Only undamaged fruits less than a year old are used for the top grades of Hungarian paprika. Before non-pungent paprika varieties were available, the top grades of paprika were prepared by removing the dissepiment (ribs on the inside of the pericarp which are rich in CAPS) by special knives,13  but this method is no longer used.12

3.2      Oleoresin production

Oleoresin  is  a  viscous  liquid  or  semi-solid  material  derived  by  extraction  from  finely- ground  powder,  which  contains  the  aroma  and  flavour  of  its  source.  Three  types  of oleoresin are produced. High-pungency Capsicum oleoresin is produced in India, Africa and China near the production areas of low cost, very pungent chilli varieties. Medium- pungency  red  pepper  oleoresin  is  produced  in  many  regions.  Non-pungent  paprika oleoresin is produced in Spain, Ethiopia, Morocco, Israel, India, USA, Mexico and South Africa.5  Oleoresin  is extracted from  finely  ground chilli  or  paprika  powder.  A volatile non-aqueous solvent such as hexane, ether, or ethylene dichloride is added and allowed to thoroughly wet the material. The oleoresin enters into solution with the solvent, forming micella.  After  a  period  of  time,  the  micella  is  removed,  and  the  solvent  replaced  with fresh solvent to continue the extraction. The solvent is subsequently removed from the extract  by  evaporation  at  the  lowest  practical  temperature  to  avoid  loss  of  aromatic volatile  compounds. This  is  done  in  two  stages:  the  first  stage  removes  approximately

95% in a standard film evaporator, and then the concentrated micella passes through a partial vacuum that removes the rest of the solvent and reduces the micella to oleoresin. The remaining solvent held in the mass of the extracted powder is recovered by very high vacuum. Typical yield of oleoresin depends on the solvent used and ranges from 11.5–

16.5%.5   The  oleoresin  pungency  depends  on  the  pungency  of  the  original  powder. Paprika  oleoresin  has  little  to  no  pungency,  and  is  used  for  its  colour  and  flavour properties,  while  Capsicum  oleoresin  can  have  CAPS  levels  up  to  10%,  and  is  used primarily as a source of high pungency.

3.3     Dry chilli production Chilli peppers are typically produced on small farms, less than 1 ha in size, in areas where cheap labour is available for harvesting. The largest producer is India, with an estimated

894,000 ha devoted to the crop annually. India is the largest exporter of dried chilli in the world.  The  second-largest  producer  is  China,  which  grows  an  estimated  216,000  ha annually and also exports sizeable quantities of dried chilli.14  Fruits are typically allowed

to partially dry on the plant, then harvested and placed in well-ventilated areas receiving direct sunlight for drying. Sun drying can result in bleached fruits, especially if rainfall is received during the drying period, and the fruits may have extraneous matter adhering to them. In more advanced regions, the use of controlled drying improves the quality of the dried fruits. The best drying temperature is 60–70sC; this gives maximum colour values and  longest  colour  retention  time.  Higher  temperatures  tend  to  caramelize  the  sugars present  in  the  fruits  and  give  them  a  dark  colour.  The  optimum  moisture  content  is approximately 10%.15-17

4     Main uses in food processing

There are many uses of peppers in food processing, including as a food colourant, as a source  of  pungency  in  food,  as  a  source  of  flavour,  as  a  source  of  pain  relief  for pharmaceutical use, and as a repellent. In many cases two or more of these properties are included in the same product; for example, paprika may be a source of colour, pungency, and flavour.

4.1     Colour

People whose diets are largely colourless starches, such as rice or maize, use peppers to add  colour  to  their  bland,  achromatic  diets.  Paprika,  paprika  oleoresin,  red  pepper oleoresin, and dried chilli may all serve as a source of red colour in various processed products, but the primary sources of red colour are paprika and paprika oleoresin. Paprika is  used  in  many  products  where  no  pungency  is  desired,  but  the  colour,  flavour,  and texture  of  a  finely  ground  powder  is  desired.  These  include  processed  lunchmeats, sausages,  cheeses  and  other  dairy  products,  soups,  sauces,  and  snacks  such  as  potato chips. Paprika oleoresin is used as a colour and flavour additive in many products where the texture is important and small particles of paprika powder would be undesirable.5

4.2     Pungency

Red pepper oleoresin is used as a source of both colour and pungency in canned meats, sausages, smoked pork, sandwich spreads, soups, and in dispersed form in some drinks such as ginger ale. Capsicum oleoresin is used as a source of pungency in many products, especially  chilli  sauces  with  extremely  high  SHU  ratings.  Oleoresin  has  considerable advantages  over  dried  chilli  including  more  stable  colour  retention,  easier  to  handle compared to the rather bulky dried chilli, and the ability to mix and dilute oleoresin with other substances to produce a range of colour and/or pungency values. Dried chilli is also used as a source of both colour and pungency, particularly in the production of crushed red peppers, chilli powder and chilli sauces.

4.3     Flavour

Paprika is valued for its flavour in many products in addition to its colour. Dried chilli is also  valued  for  its  contribution  to  flavour  in  chilli  sauces  and  chilli  powders.  The flavouring  principle  is  associated  with  volatile  aromatic  compounds  and  colour.  As  a general  rule,  when  the  colour  of  paprika  or  chilli  powder  fades,  the  flavour  also disappears.

4.4     Pharmaceutical

Capsicum  oleoresin  is  the  primary  form  of  peppers  used  for  pharmaceutical  purposes. Here the primary requirement is the CAPS level. Further refinement of the oleoresin may be performed  to  produce  pure  capsaicin. At  least  two  types of pain  relief products are currently  being  marketed,  including  creams  containing  0.75%  capsaicin  (for  example, ZostrixTM),  and  plasters  containing  3%  oleoresin  (for  example,  VorwerkTM).  Several types of capsules containing chilli powder (cayenne powder) with a range of capsaicin levels are currently being marketed.

5     Functional properties and toxicity

Peppers are well-known for their health benefits. Herbalists have long promoted peppers for   their   health-enhancing   effects.   These   include   clearing   the   lungs   and   sinuses, protecting the stomach by increasing the flow of digestive juices, triggering the brain to release  endorphins  (natural  painkillers),  making  your  mouth  water,  which  helps  to neutralize cavity-causing acids, and helping protect the body against cancer through anti- oxidant activity.3

5.1     Toxicity

The acute toxicity of capsaicin has been measured in several animal species. In mice, the

LD50   values  for  CAPS  depended  on  the  mode  of  administration,  ranging  from  0.56

(intravenous)  to  512  (dermal)  mg  kg-1   body  weight.  Death  was  due  to  respiratory paralysis.18  To reach the LD50  value for human oral administration, the average person would have to drink 1.5 quarts of Tabasco   sauce. The painfulness of the CAPS is a self- limiting factor in their role as a human food ingredient; you can only eat so much at one time. No death has ever been recorded due to CAPS-induced respiratory failure, and the investigators concluded  that the acute  toxicity of CAPS as a food additive in man was negligible.18  The effect of sub-chronic toxic doses has been examined in rats. Adult rats exhibited  no  noticeable  behavioural  or  physiological  changes  when  given  sub-chronic doses  of  crude  chilli  extract  by  stomach  tube  for  60  days.  Food  consumption  was significantly higher but body weight was lower than the control group after 60 days.19

5.2     Functional benefits

CAPS stimulates sensory neurons in the skin and mouth cavity, creating a sensation of warmth that increases to severe pain (type C nociceptive fibre pain) with higher doses. The neurons produce the neuropeptide Substance P (SP), which delivers the message of pain. Repeated exposure of a neuron to capsaicin depletes SP, reducing or eliminating the pain sensation in many people.20  Thus the use of CAPS in pain relief has two modes of action: the sensation of heat, which may help sore muscles and arthritic joints feel better, and the depletion of SP, which reduces the pain sensation in the exposed area. Peppers have been reported to contain an anticoagulant that helps prevent the blood clots that can cause heart attacks.3  Foods containing CAPS increase the thermic effects of food (TEF). The TEF is the slight increase in the body’s metabolic rate after consumption of a meal. A meal  containing  foods  with  CAPS  can  increase  the  body’s  TEF  up  to  25%  for  three hours.3    The   role   of  CAPS  in   triggering  the   brain   to   release  endorphins  (natural painkillers)  is  well-known.  As  more  CAPS  is  consumed,  the  body  releases  more

endorphins, causing one to feel a mild euphoria a natural high! Regular consumption has only a slight desensitizing effect.

The Hungarian scientist Albert Szent-Gyorgyi won the 1937 Nobel Prize for isolating ascorbic acid, better known as vitamin C, from peppers. Peppers are also high in vitamin A, vitamin E, and potassium, and low in sodium. One hundred grams of fresh red chilli pepper has 240 mg of vitamin C (five times higher than an orange), 11,000 IU of vitamin A, and 0.7 mg of vitamin E. Vitamin C is sensitive to heat and drying but vitamin A is very  stable,  and  paprika  and  dried  chilli  both  contain  relatively  high  amounts  of  this important nutrient.5

6     Quality issues The quality parameters of paprika, oleoresin, and dried chilli focus primarily on colour, pungency,  and  microbial  and  insect  contamination,  but  vary  depending  on  the  product and the intended end use.

6.1     Paprika quality Paprika always refers to a ground product prepared of highly coloured, mild or sweet red fruits.  The  main  quality  factors  are  colour  and  pungency.  There  are  eight  grades  of Hungarian paprika (Table 1). The condition of the fruits at harvest, and to some extent the manner in which they are processed, determines which grade of paprika will be made from  them.  Fruits are  graded at  harvest for colour,  pungency  and  aroma. The  Grade  1 fruits   are   used   to   make   the   best   grades   of   paprika   (special,   capsaicin-free,   and delicatesse), while Grade 2 fruits are used to make lower grades of paprika (fine sweet, semi-sweet). Fruits from later harvests and those rejected from higher grades are used for rose, while spotted fruits not belonging to any other grade are used for pungent, which is the  lowest  grade.  Spanish  paprika  is  divided  into  three  types  (sweet,  semi-sweet,  and pungent)  by  pungency,  and  each  type  is  divided  into  three  grades  (extra,  select,  and ordinary) by colour, ash content and moisture content. The best Spanish paprika is sweet, extra  grade,  with  no  pungency,  bright  fiery  red  colour  and  only  0%  moisture.5

Microbial contamination by bacteria such as Bacillus cereus, B. subtilis, and Clostridium perfringens,21-23  yeasts,  and  aflatoxin-producing  moulds  such  as  Aspergillus  flavus,  A. glaucus, and A. niger24  have been reported. A total bacterial plate count below 10,000/ gram  is  desirable,  with  yeast,  mould  and  coliforms  below  1000/gram.25   Major  health hazard organisms such as E. coli, Salmonella, and Shigella must be negative. Control by fumigation with ethylene oxide is generally recognized as safe by many countries, as long as fumigant residues do not exceed international standards.26  Ethylene oxide is toxic and requires  special  vacuum  equipment  and  technical  skill  to  administer,  but  it  vaporizes rapidly from the material, leaving little residue, and it has no effect on colour, pungency, or  flavour,  so  it  is  generally  considered  the  most  effective  method.25   Paprika  that  is processed   and   stored   properly   generally   does   not   have   problems   with   insect contamination.27

6.2     Oleoresin quality The  quality  specifications  for  the  different  types  of  oleoresin  are  given  in  Table  2. Three  types  of  oleoresin  are  specified,  based  on  the  pungency  and  colour  values.

Table 1    Grades of Hungarian paprika, from best (special) to worst (pungent)5

Quality characteristics


Total        insoluble  Ether                Powder

Grade                     Colour                   Pungency               Aroma                    H2O          ash           ash           extract                              finenessa

(%)          (%)          (%)          (%)                (sieve #)

1)  Special              Bright, fiery           none or very          pure, very              10.0         5.0           0.3           12.0                              0.45

red colour             little                       aromatic

2)  Capsaicin-free  Bright red              none                      pure, sweet            10.0         5.5           0.4           13.0                              0.50

(mild table)                                      some bitterness

3)  Delicatesse       Bright red,             barely                     typical pure            10.0         6.0           0.45         14.0                              0.50

(table)                darker or light       detectable              aroma

4)  (hot table)b               Bright red,             less pungent           typical pure            10.0         6.0           0.45         14.0                              0.50

darker or light                                     aroma

5)  Fine sweet        Dark or yellowish red    less pungent  aromatic                 10.0         6.5           0.5           16.0                              0.50

6)  Semi-sweet       Darker to yellowish                             pungent                  less typical               10.0         7.0                              0.7                         17.0                       0.63

red                                                       aroma

7)  Rose (pink)       Dull red to            markedly                typical                    10.0         0              0.8           NSc                                                            0.63

pale yellow            pungent                  aroma

8)  Pungent            Light brown          very pungent          NS                         10.0         10.0         1.2           NS                              0.63

to greenish

a  100% of the powder can pass through sieve no.

b  Similar to Delicatesse, but with a CAPS minimum of 25 mg 100 g  1.

c  Not specified.

Table 2    Essential Oils Association standards for oleoresins34

Type of oleoresin

Trait                      Capsicum                 red pepper             paprika

Number                 EOA no. 244           EOA no. 245         EOA no. 246

Preparation            Solvent extraction    Solvent extraction  Solvent extraction of dried ripe fruita          of dried ripe fruit                         of dried ripe fruit

Appearance           Clear, red or light    Deep red                Deep red amber, viscous

Odour/taste            very pungent, aromatic                          pungent, aromatic           aromatic

SHU                      >480,000                 >240,000               0

Colourb                                    <4,000                     <20,000                 40,000–100,000

Soluble in:

Benzyl benzoate    yes                           yes                         yes

Alcohol                 partly, with oily layer                             partly, with oily layer     partly, with oily layer

Fixed oils              yes                           yes                         yes

Propylene glycol    no                            no                          no

a  Residual  solvent limits:  <25 ppm  hexane, <30 ppm ethylene  chloride  or acetone, or <50 ppm  isopropyl or methyl alcohol for all oleoresins.

b  Colour is determined by measuring the absorbance of a 0.01% solution of oleoresin in acetone at 258 nm. The absorbance value is multiplied by 61,000 to convert to total colour units.

Capsicum oleoresin has very high pungency and low colour, and is used as a source of pungency  where  colour  is  not  important.  Red  pepper  oleoresin  has  both  moderate pungency and colour, and is used where both traits are important. Paprika oleoresin has very  high  colour  and  little  or  no  pungency.  Importers  of  Capsicum  oleoresin  prefer  a pungency  value  in  the  range  of  6–10%  CAPS (1,000,000–1,600,000  SHU).5  Oleoresin that  is  processed  and  stored  properly  has  few  problems  with  microbial  or  insect contamination.

6.3     Dried chilli quality

Like the other forms of peppers used in food processing, colour and pungency are the major quality factors, as well as aroma. Factors that affect the colour of dried chillies include the cultivar, the stage of maturity at harvest and subsequent curing, fruit drying conditions,  and  the  final  moisture  content.  At  less  than  10%  moisture,  the  colour appears bleached, while at levels greater than 10% there is darkening, possibly caused by   non-enzymatic   browning.   The   colour   of   crushed   or   ground   chilli   powder deteriorates  faster  than  whole  chillies,  due  to  the  auto-catalyzed  degradation  of carotenoids.  The  major  factor  influencing  colour  retention  during  storage  is  the temperature,  followed  by  the  moisture  content.  The  effect  of  air,  light,  and  type  of container  is  minimal.  The  optimum  storage  conditions  for  chilli  powder  colour retention   are      16sC   and   10–11%   moisture.28–29    The   American   Spice   Trade Association  (ASTA)  has  set  standards  for  measuring  colour  in  pepper  products  that are  widely  followed. Samples are  extracted  acetone  and  the  absorbance  is read  by a spectrophotometer at 460 nm.30  Values are expressed as ASTA units; a value greater than 200 is considered a very deep red colour. Commercial samples of chilli powder normally range from 100–200 ASTA units, and a premium may be paid by processors for lots with extractable colour greater than 140 units.

The standard for measuring pungency in all forms of peppers is Scoville Heat Units

(SHU). The concept was introduced in 1912, when Wilbur L. Scoville, a pharmacologist with Parke Davis, developed the Scoville Organoleptic Test.6  A panel of five people is used  as  heat  samplers.  The  panel  analyzes  a  solution  made  of  exact  weights  of  dried chillies dissolved in alcohol and diluted with sugar water. The pungency of the peppers is rated in multiples of one hundred SHU. A majority of three samplers has to agree on one value  before  any  sample  is  given  a  value.  This  method  is  subjective,  especially  as  it depends on the taster’s palate and sensitivity to pungency. Also, the human palate quickly becomes  desensitized  to  CAPS  after  tasting  more  than  a  few  samples  within  a  short period  of  time.  It  has  largely  been  replaced  by  high-pressure  liquid  chromatography

(HPLC),  which  is  relatively  rapid  and  reliable  compared  to  the  Scoville  Organoleptic Test.31  Results are reported as ppm CAPS, which can be converted to SHU or other units by the following scale: 1 ppm = 16 SHU = 0.0001% = 0.001 mg g.  1  Pure capsaicin =

16,000,000 SHU.

Microbial contamination is also a problem in dried chilli, and the same standards used for paprika also apply to dried chilli. In addition, insect contamination can be a problem, particularly the universal drugstore beetle, Stegobium paniceum (Linn.) and the cigarette beetle, Lasioderma serricorn (Fab.).32  Insect damage is three-fold, first by the physical loss as frass, second by the loss of quality due to broken pods and loose seed, and third by mould growth and entry of mites due to insect  holes in the fruit walls. Control can be achieved by fumigation with insecticidal chemicals, although their use must be monitored carefully and fumigant residues must be within the limits set by international standards.33

The control method used depends on the quantity,  the technological  capability  and the cost.

6.4     Adulteration

Several types of adulteration are possible and have been reported at various times. Whole dried chillies may be adulterated by adding sub-standard dried fruits, which are darkened or  bleached,  by  adding  moisture  to  increase  the  weight  of  a  load,  or  by  coating  with mineral oil or synthetic dyes such as coal tar red to improve the colour and appearance.5

A more difficult problem is the addition of varieties or harvests that vary in CAPS and colour  but  have  similar  shape,  size,  and  visual  colour.  Only  testing  of  representative samples and sub-samples can determine if a lot is homogeneous. Chilli powder may be adulterated   in   many   ways,   some   of   which   are   very   difficult   to   detect   without sophisticated  tests  such  as  HPLC  analysis,  and  ‘pure standards  must  always  be  used for comparison. Chilli powder may be adulterated by adding extra amounts of bleached pericarp,   seeds,   calyx,   and   peduncle   to   increase   bulk   without   visibly   affecting appearance.  Other  reported  adulterants  include  artificial  dyes,  almond  shell  dust,  and dried red beet pulp.

Filth, such as insect fragments, rodent droppings and hairs, and fungal spores are an indication  of  poor  handling  and  storage.  Heavy  metals  and  chemical  residues  from pesticides  represent  another  adulteration  problem.  Pesticide  residues  reported  in  chilli powder  include  chlorinated  hydrocarbons,  DDT,  Dieldrin,  Endrin,  and  lindane,  but generally in very low levels. Oleoresin may be adulterated by adding synthetic saturated acid vanillylamides such as pelargonic vanillylamide. Detection of these adulterants can be done by sophisticated gas chromatography of the saponified extract5  or by thin-layer chromatography coupled with HPLC.8

7     References

1   POULOS J.M. Capsicum L., in J.S. Siemonsma and K. Piluek (eds.) Plant Resources of South-East  Asia  No.  8:  Vegetables,  pp.  136–40,  Wageningen,  The  Netherlands, Pudoc Scientific Publishers, 1993.

2   HEISER  C.B.  JR.   Seed  to  Civilization:  The  Story  of  Man’s  Food,  San  Francisco, California, W.H. Freeman and Co., 1973.

3   ANDREWS  J.  Peppers:  The  Domesticated  Capsicums,  Austin,  Texas,  University  of

Texas Press, 1995.

4   ANON. Food and Agriculture Organization (FAO) database at 1997.

5   GOVINDARAJAN V.S. Capsicum production, technology, chemistry and quality. Part II. Processed products, standards, world production, and trade. CRC Critical Reviews in Food Science and Nutrition 1986 23(3): 207–8

6   SCOVILLE W.  Note on Capsicums. J. Am. Pharm. Assoc. 1912 1: 453–4.

7   GOVINDARAJAN V.S. Capsicum production, technology, chemistry and quality. Part I.  History,  botany,  cultivation  and  primary  processing.  CRC  Critical  Revie ws  in Food Science and Nutrition 1985 22(2): 109–76.

8   BENSINGER  M.  Personal  communication.  ChromTec,  North  Palm  Beach,  Florida,


9   ISIDORO  E.,  COTTER  D.J.  and  SOUTHWARD  G.M.  A  comparison  of  colour  loss  of  red chile pepper pods on or off the plant and during storage as powder. HortScience 1990

25: 954–5.

10   LEE  D.S.,  CHUNG  S.K.,  KIM  H.K.  and  YAM  K.L.  Nonenzymatic  browning  in  dried  red pepper products. J. Food Quality 1991 14: 153–63.

11   GARCIA-MOMPEAN  P.,  FRUTOS  M.J.,  LOPEZ-SEGURA  M.   and  GIMENEZ  J.L.   Effect  of freezing on the stability of paprika. 1st International Conference on Alternative and Traditional Use of Paprika, Szeged, Hungary, 1999.

12   MOOR  A.  Personal  communication.  Vegetable  Crops  Research  Institute,  Budapest, Hungary, 2000.

13   ANON.   Paprika.   Budapest,   Hungary,   Monimpex   Hungarian   Foreign   Trading

Company, 1999.

14   POULOS  J.M.  Problems  and  Progress  of  Chilli  Pepper  Production  in  the  Tropics,  in

(C.B.  Hock,  L.W.  Hong,  M.  Rejab  and  A.R.  Syed  (eds.)  Proceedings  of  the Conference on Chilli Pepper Production in the Tropics, pp. 98–129. Kuala Lumpur, Malaysia, MARDI, 1992.

15   LEASE  J.G.   and  LEASE  E.J.   Effect  of  drying  conditions  on  initial  colour,  colour retention, and pungency in red peppers. Food Technology 1962 16: 104–10.

16   CARNEVALE J., COLE E.R. and CRANK G. Photocatalyzed oxidation of paprika pigments.

J. Agric. Food Chem. 1980 28(5): 9536.

17   KANNER  J.,  HAREL  S.,  PALEVITCH  D.  and  BEN-GERA  I.  Colour  retention  in  sweet  red paprika (Capsicum annuum L.) powder as affected by moisture contents and ripening stage. J. Food Technology 1977 12(1): 59.

18   GLINSUKON   T.,   STITMUNNAUTHUM   V.,   TOSKULKAO   C.,   BURANAWUTI   T.    and TANGKRISANAVINONT  V.,   Acute  toxicity  of  capsaicin  in  several  animal  species. Toxicon 1980 18: 215–20.

19   GOVINDARAJAN V.S. and SATHYANARAYANA M.N. Capsicum production, technology, chemistry, and quality. Part V. Impact on physiology, pharmacology, nutrition, and metabolism; structure, pungency, pain, and desensitization sequences. CRC Critical Reviews in Food Science and Nutrition 1991 29: 435–74.


The  capsaicin  receptor:  a  heat-activated  ion  channel  in  the  pain  pathway.  Nature

1997 389: 816–24.

21   SMITH L.D.S. Clostridium perfringens, in L.D. Slanetz, C.O. Chichester, A.R. Gaufin, and  Z.J.  Ordal  (eds.)  Food  Poisoning  in  Microbiological  Quality  of  Foods,  p.  77. New York, Academic Press, 1963.

22   SEENAPPA M. and KEMPTON A. G. A note on the occurrence of Bacillus in Indian spices of export quality. J. Appl. Bact. 1981 50: 225.

23   BAXTER R.  and HALZAPFEL W.H.  A microbial investigation of selected spices, herbs, and additives in South Africa. J. Food Sci. 1982 47: 570.

24   FLANNIGAN   B   and   HUI   S.C.   The   occurrence   of   aflatoxin   producing   strains   of

Aspergillus flavus in the mold floras of ground spices. J. Appl. Bacteriol. 1976 41:


25   WEBER F.E. Controlling microorganisms in spices. Cereal Foods World 1980 25: 319.

26   ANON. WHO evaluation of some pesticide residues in foods, Pesticide Residue Series

No. 1. Geneva, Switzerland, World Health Organization, 1972.

27   GOVINDARAJAN V.S. Capsicum production, technology, chemistry and quality. Part I.  History,  botany,  cultivation  and  primary  processing.  CRC  Critical  Reviews  in Food Science and Nutrition 1985 22: 109–76.

28   MALCHEV E., IONCHEVE N., TANCHEV S. and KALPAKCHIEVA K. Quantitative changes in carotenoids during the storage of dried red pepper powder. Nahrung 1982 26: 415–


29   GUZMAN G., GIMENEZ J.L., CANO J.  and LAECINA J.  Effect of low storage temperatures on Murcia paprika. Anal. Bromatol. 1973 25: 71–6.

30   ANON.,  Extractable  colour  in  Capsicums  and  their  oleoresins,  ASTA  Method  20.1.

Englewood Cliffs, New Jersey, American Spice Trade Association, 1997.

31   COLLINS  M.D.,  WASMUND L.M.  and  BOSLAND  P.W.  Improved  method  for  quantifying capsaicinoids   in   Capsicum   using   high-performance   liquid   chromatography. HortScience 1995 30: 137–9.

32   MUTHU M. and MAJUMDER S.K. Insect control in spices, Proc. Symp. Dev. Prosp. Spice

Industry in India, Mysore, India, Assoc. Food Science and Technology, 1974, p. 35.

33   MONRO H.A.U. Manual of fumigation for insect control, Agricultural Studies no. 391.

Rome, Italy, FAO, 1961.

34   ANON.  Specifications  for  paprika  oleoresin,  red  pepper  oleoresin,  and  Capsicum oleoresin, New York, Essential Oils Association, 1975.

Politica de confidentialitate



Vizualizari: 918
Importanta: rank

Comenteaza documentul:

Te rugam sa te autentifici sau sa iti faci cont pentru a putea comenta

Creaza cont nou

Termeni si conditii de utilizare | Contact
© SCRIGROUP 2022 . All rights reserved

Distribuie URL

Adauga cod HTML in site