Scrigroup - Documente si articole

Username / Parola inexistente      

Home Documente Upload Resurse Alte limbi doc  


BulgaraCeha slovacaCroataEnglezaEstonaFinlandezaFranceza
GermanaItalianaLetonaLituanianaMaghiaraOlandezaPoloneza
SarbaSlovenaSpaniolaSuedezaTurcaUcraineana

AdministrationAnimalsArtBiologyBooksBotanicsBusinessCars
ChemistryComputersComunicationsConstructionEcologyEconomyEducationElectronics
EngineeringEntertainmentFinancialFishingGamesGeographyGrammarHealth
HistoryHuman-resourcesLegislationLiteratureManagementsManualsMarketingMathematic
MedicinesMovieMusicNutritionPersonalitiesPhysicPoliticalPsychology
RecipesSociologySoftwareSportsTechnicalTourismVarious

Turmeric - Post-harvest processing and Quality specifications

nutrition

+ Font mai mare | - Font mai mic



DOCUMENTE SIMILARE

Trimite pe Messenger
Turmeric - Post-harvest processing and Quality specifications
All About Protein - Sources of Protein, Biological Value
Ginger - Production, Main uses in food processing


Turmeric




1       Introduction

Turmeric of commerce is the dried rhizome of the plant Curcuma domestica Val. syn. C. longa L. Turmeric is used in curry powder, chicken bouillon, sauces, gravies, dry seasonings, backing mixes, processed cheese pickles, relishes, breading soups, beverages, and confec- tions (Peter, 1999) in addition to its use in medicine, religious functions and as biopesticide. The  genus  Curcuma  originated  in  the  Indo-Malayan  region  (Purseglove,  1968). Considerable  species  diversity  of  Curcuma  occurs  in  this  region.  However,  about  40 species  of  the  genus  including  C.  longa  are  indigenous  to  India  indicating  the  Indian origin (Velayudhan et al., 1999). The antiquity of turmeric dates back to the Assyrians of

600 BC. Ethnobotanical evidence indicates that the use of turmeric has been in India since very  ancient  days.  It  is  believed  that  the  crop  spread  out  from  India  to  distant  Asian countries under the influence of the Hindu religion. According to Marco Polo (1280) the spread of turmeric to China took place in AD 700 (Ridley, 1912). Burkill (1966) believed that the crop spread to West Africa in the thirteenth and to East Africa in the seventeenth centuries, respectively. It was introduced to Jamaica in 1783 (Velayudhan et al., 1999). Though  turmeric  is  now  grown  in  India,  Pakistan,  Malaysia,  Myanmar,  Vietnam, Thailand, Philippines, Japan, China, Korea, Sri Lanka, Nepal, South Pacific Islands, East and West Africa, Malagasi, Caribbean islands, and Central America, India is the major producer and exporter of turmeric at present.

The genus Curcuma belongs to the family Zingiberaceae and contains 49 genera and

1400  species.  In  addition  to  Curcuma  longa,  C.  zedoaria  Rosc.  and  C.  xanthorrhiza Roxb. are also minor sources of curcumin colour. Velayudhan et al. (1999) recognized six taxonomic varieties within C. longa based on numerical taxonomic analysis, namely C.  longa  var.  typica,  C.  longa  var.  atypica,  C.  longa  var.  camphora,  C.  longa  var. spiralifolia, C. longa var. musacifolia and C. longa  var. platifolia. Most of the C. longa found in India belong to C. longa var. typica or atypica.

Turmeric  is  an  erect  perennial  herb,  grown  as  an  annual  crop.  The  above  ground morphology of the plant is mainly represented by an erect pseudostem bearing leaves and inflorescence.  There  may  be  2–3  pseudostems  (tillers)  per  plant.  The  height  of  the


pseudostem varies from 90–100 cm depending on the variety. Leaf number ranges from 7–

12. In fact, it is the leaf sheath which forms the pseudostem. The leaf sheath is usually green in colour. Lamina may be lanceolate or elliptic in shape, thin with acuminate tip. The colour of lamina is usually green above and pale green below, with a length of about 30–40 cm and width  8–12 cm.  Inflorescence  is  a  cylindrical,  fleshy,  central  spike  of  10–15  cm  length, arising through the pseudostem. Flowers are subtended by bracts in the spike. The bracts are adnate for less than half of their length and are elliptic,  lanceolate  and acute. The upper bracts are white in colour while the lower bracts are green. One to four flowers are borne in the  axil  of the  bract,  opening  once  at  a  time.  About  30 flowers  are  produced  in a  spike

(Nazeem  and  Rema  Menon,  1994).  The  calyx  is  short,  usually  toothed  and  split  nearly halfway down on one side. The corolla is tubular, thin and whitish with a yellow tip. Usually the upper most and lower most bracts will be sterile. Seed set is observed in turmeric and seeds are viable. Seeds are produced in capsules and there will be from one to numerous sunken capsules in an inflorescence depending on the flowers fertilized.

At the base of the pseudostem, below the ground, rhizomes are formed consisting of mother  rhizome(s),  primary,  secondary  and  even  tertiary  fingers,  the  whole  forming  a compact clump. Rhizomes grow symbodically and are of orange brown, pale yellow or reddish yellow colour.

C. longa is considered to be a triploid with a somatic chromosome number of 63 (2n =

3x = 63).

2       Production India is the  major  producer and  exporter  of turmeric  in the  world. In India turmeric  is grown over 1.34 ha with an annual production of 5.43 lakh tonnes. India exported 23 000 t of  turmeric  during  1996–97  to  67  countries  (Peter,  1999).  Turmeric  is  exported  as turmeric dry, turmeric fresh, turmeric powder, turmeric oleoresin and turmeric oil. The major turmeric importing countries from India are Iran, Japan, South Africa, Singapore, Sri Lanka, USA, UAE, Malaysia, Germany and Bangladesh. Export of turmeric by item from India during 1994–96 is given in Table 1.

There are about 60 turmeric cultivars (land varieties) available in the country. Some of the  important  local  cultivars  are  ‘Duggirala’,  ‘Tekurpet’,  ‘Sugandham ‘Amalapuram’,

‘Lakadong’,   ‘Alleppey’,   Rajapuri’,   ‘Mydukur’,   ‘Wynad   local’,   etc.  Cultivars  like

‘Alleppey,  ‘Wynad  local’,  ‘Lakadong’,  ‘Edapalayam’,  ‘Thodupuzha’,  etc.,  are  rich  in curcumin content (>7%). In addition to these land varieties, there are about 17 improved varieties  in  India.  The  important  improved  turmeric  varieties  are  ‘Prabha’,  ‘Prathibha’

(Fig. 1), ‘Sudarsana’, ‘Suguna, ‘Co-1’, ‘Sugandham, ‘BSR 1’, etc. (Sasikumar et al.,

1996).  Maturity  of  these  varieties  is  7–9  months.  The  yield  (fresh)  of  the  improved varieties is 20–40 t/ha.

Table 1    Export of turmeric from India during 1994–96

Item                                 1994–95 Quantity (t)       1995–96 Quantity (t)

Turmeric dry                   16,727.9                          19,189.5

Turmeric fresh bulk           5964.1                              800.9

Turmeric powder               6093.7                             7385.9

Turmeric oil                           0.3                                   0.1

Turmeric oleoresin              159.0                               149.1


1    Prathibha

3       Post-harvest processing

Harvested turmeric is washed well to remove the adhering soil; roots removed, the fingers and mothers are separated. Mother and finger rhizomes are boiled separately for about

40–60 minutes under slightly alkaline condition (100 g of sodium bicarbonate or sodium carbonate in 100 l of water) in copper, galvanized iron or earthen vessels and sun dried on bamboo  mat  or  clean  drying  floor  for  10–15  days  so  as  to  bring  down  the  moisture content to 10%.

Another method of curing is by taking cleaned mother and finger rhizomes (approx.

50 kg) separately in perforated trough of convenient size made of GI or MS sheet with extended parallel handle. The trough containing the fingers are immersed in water using a paddle. The alkaline solution is then poured into the pan so as to immerse the rhizome, which are then boiled until they become soft and dried. The dry recovery of cured turmeric varies between 15–30% depending on variety, location and cultural practices.

Dried  turmeric  is  subjected  to  polishing  either  manually  or  mechanically  in  power operated drums (Purseglove et al., 1981). A weight loss of about 5–8% is expected due to full polishing. Polished rhizomes are made attractive by artificially colouring them with turmeric powder. During polishing itself turmeric is added to the drum either as powder or as emulsion.

Rama Rao et al. (1975) described an indigenous method of storing turmeric. The cured product is stored in suitable pits dug on a raised site. The bottom and sides of the pits are lined thickly with dried grass or similar material. After filling up the pits with the cured turmeric they are covered with mat or grass and finally with earth. The produce can be stored for one year like this. At Sangli, India, farmers usually store turmeric like this in pits  dug  in  the  field.  Dealers  usually  store  the  cured  turmeric  in  fresh  jute  bags  or  in sound, clean, dry, heat-sealed polythene bags in dry, cool, warehouses (Purseglove et al.,

1981). After harvest, fresh turmeric is kept in gunny bags or baskets or heaped open in well-ventilated sheds.


Turmeric is available as whole, ground, oleoresin and oil. Turmeric is used mainly as fine ground turmeric in cooking in  the  West  while  those in the  growing countries  buy turmeric  mostly  in  whole  or  split  form.  Importing  countries  in  the  West  buy  ground turmeric, turmeric oleoresin and oil.

3.1       Ground turmeric

A sophisticated grinding process is not needed for ground turmeric, since there would not be much loss of quality while grinding turmeric. Usually clean, dry, stone-hard fingers are  powdered through the  use of hammer mills followed by disc-type  attrition mills  to obtain 60–80 mesh powder. Accessory equipment for pre-cleaning includes an aspiration system (which removes the light extraneous matter), destoners and magnetic separators for  fine  iron  contamination,  vacuum  fumigators,  and  the  noise  reducing  fixtures,  dust collection systems, mechanical  or closed circuit pneumatic conveying system, blending and   automatic   packaging   system,   now   employed   by   most   big   spice   grinders   for optimizing  the  output and for assuring hygienic  and flavour quality.  The  smaller  spice manufacturers  in  the  West  and  Asia  use  simple  cleaning  and  grinding  equipment  and partly mechanized packaging systems (Govindarajan, 1980).

Turmeric powder is packed in bulk in containers such as fibre hard drums, multi-wall bags and tin containers suitably lined or coated to prevent moisture absorption, loss of flavour and colour. For the retail trade the unit packages are in flexible packagings such as low and high density polyethylene, polyvinyl chloride, glassine or in glass packages. Storage  studies  conducted  on  turmeric  powder  using  different  packaging  materials have  shown  that  aluminium  foil  laminate  or  double  pouch  of  glassine  or  low  density polyethylene offered good protection for the stored product for about six months without



loss of quality and colour (Balasubramanian et al., 1979).

3.2       Turmeric oleoresin

Turmeric  oleoresin  is  being  used  increasingly  by  the  processed  food  industries  in  the West  to  impart  colour  and  aroma.  Oleoresin  is  a  mixture  of  compounds,  namely curcumin,  volatile  oil  and  other  active  ingredients,  non-volatile  fatty  and  resinous material  extractable by solvents, used singly,  in sequence  or in combination.  Turmeric oleoresin  is  orange-red  in  colour  and  consists  of  an  upper  oily  layer  and  a  lower crystalline  layer  (Krishnamurthy et al., 1976). For commercial  use, it  is usually mixed with  a  non-volatile  edible  solvent  such  as  vegetable  oil,  propylene  glycol  or  polyoxy ethylene sorbitan fatty acid esters in order to disperse the extracted material and to render it free flowing and ‘soluble (Purseglove et al., 1981).

Turmeric oleoresin is obtained by solvent extraction of ground spice. Acetone is a good solvent  for  oleoresin  extraction.  Soxhlet  apparatus  or  cold  percolation  is  used  for extraction. Curcumin, the principal colouring matter forms about one third of a good quality oleoresin.  Yield  of  oleoresin  varies  from  7–15%  depending  on  varieties.  Govindarajan

(1980) has given the detailed steps for industrial extraction of turmeric oleoresin.

3.3       Turmeric oil

Turmeric contains 3–5% volatile oil, which is obtained by steam distillation of turmeric powder,  for  about  8–10  h.  Turmeric  oil  is  pale  yellow  in  colour  with  peppery  and aromatic  odour.  The  oil  contains  about  60%  turmeron,  25%  zingiberene  and  small quantities of d-   -phellandrene, d-sabinene, cineole and forneol.


3.4       Curry powder Turmeric  powder  is  the  major  component  (about  40–50%)  of  curry  powder.  Curry powder  is a  spice  mixture  used  for seasoning  dishes  containing  vegetables, meat,  fish, eggs or vegetable plus meat or fish (i.e. curry) in the orient. In the West also curry powder is  used  for  seasoning  dishes.  India  has  been  the  principal  exporter  of  curry  powder  to many countries like the UK, Australia, Fiji, etc.

Turmeric  powder  provides  colour  and  background  aroma  to  the  curry  powder. Govindarajan  (1980)  has  given  typical  curry  powder  composition,  quality  standards, packaging details, etc.

4       Quality specifications Cured turmeric is sorted as fingers, round, split or non-specified and marketed under its varietal  name,  which  is  usually  based  on  the  place  of  production  such  as  ‘Alleppey’,

‘Erode’, ‘Duggirala’, ‘Nizamabad’, ‘Rajapuri’, ‘Cuddappah’, etc., from India. The Indian

‘Agmark’,  standards  include  separate  gradings  for  different  varieties.  ‘Special’,  ‘good’ and  ‘fair are  some  of  the  grade  specifications.  Govindarajan  (1980)  has  given  the specification for turmeric (whole and ground).

1.   Turmeric  whole  is  the  primary  (bulbs,  rounds)  and  secondary  (fingers)  rhizomes, harvested  at  full  maturity,  cured,  dried  to  about  10%  moisture  level,  polished  and either coloured or not coloured.

2.   The  cured  rhizomes,  cleaned  and  dried,  are  ground  to  powder  without  any  added matter.

3.   Whole or powdered turmeric should have the characteristic fresh aroma and taste of turmeric and be free from foreign aroma such as mustiness. It must also be free from living insects, moulds; practically free from dead insects, insect fragments and rodent contamination visible to the naked eye or specified magnification.

4.   Turmeric fingers should not be less than 15 mm in length, hard, smooth and the core colour should be lemon yellow or bright yellow with only admissible levels of small pieces and bulbs (Table 2).

5.   Turmeric whole should not contain more than 2% by weight (lower limit for superior grade)  extraneous  matter.  The  admissible  level  of  defective  rhizome  allowed  in different varieties of turmeric is given in Table 2.

6.   The limits for chemical characteristics specified for turmeric powder are presented in

Table 3.

American Spice Trade Association (ASTA) cleanliness specification effective from 21

May  1997  for  turmeric  allows  only  a  maximum  of  three  dead  whole  insects;  5 mg/1b mammalian  or  other excreta,  3%  by  wt.  mould,  2.5% by  wt.  insect  defiled  or  infested material and 0.5% by wt. extraneous foreign matter in turmeric (Sivadasan, 1998).

Whole,  dried  or fresh turmeric  is usually  free  from  adulteration. However, turmeric powder is adulterated with foreign starch (tapioca, arrowroot, cereal floor), husks, coal tar colours,  lead  chromate,  etc.  Adulterated  turmeric  powder  will  have  low  curcumin content. Depending upon the adulterant used, the curcumin content of the samples vary from  0.37–2.07%  (Balasubramanian  et  al.,  1979).  Gas  chromatographic  methods  are available  to  detect  volatile  oil  of  other  Curcuma  sp.  used  for  admixing  the  turmeric powder. Similarly, specific tests are now available to detect each of the above adulterants in ground turmeric (Govindarajan, 1980).


Table 2    Indian specification for turmeric grade

Grade                   Pieces  Foreign    Defectives        Bulks     Characteristics

(max.   matter   (max.       (max.

wt. %.)    (max.               wt. %.)  wt. %.)

wt. %.)

Fingers (general)                                                     Finger-like shape, breaks with a

Special              2.0       1.0       0.5           2.0       metallic twang; well set and

Good                3.0       1.5       1.0           3.0       close grained; perfectly dry, free

Fair                   5.0       2.0       1.5           5.0       from weevil damage, over boiling, etc.

Fingers (Alleppey)

Good                5.0       1.0       3.0           4.0       As above

Fair                   7.0       1.5       5.0           5.0

Fingers (Rajapuri)

Special              3.0       1.0       3.0           2.0       As above, admixture of other

Good                5.0       1.5       5.0           3.0       turmeric varieties are allowed at

Fair                   7.0       2.0       7.0           5.0       a maximum of 2.5 and 10% in 3

grades, respectively.

Bulbs (rounds)

Special                        1.0       1.0                     Be well developed, smooth

Good                          1.5       3.0                     round and free from rootlets

Fair                             2.0       5.0                     The ‘Rajapuri type has higher allowance of 3.0, 5.0 and 7.0% defectives in 3 grades, respectively.

Source: Govindarajan (1980).

5       Chemical structure Turmeric is valued mainly for its principal colouring pigment, curcumin, which imparts the yellow colour to turmeric, besides other nutritive constituents like potassium (Peter,

1999) (Table 4). The  main  colouring  constituent  of  turmeric  and  other  yellow  Curcuma  species  is

curcumin, having a molecular formula of C21H2O O6. In fact, besides curcumin there are a  few  other  related  pigments  which  imparts  the  yellow  colour,  all  together  called curcuminoids  (Verghese,  1999).  Curcumin  [1,7-bis  (4-hydroxy-3-methoxy-phenyl)-1,6- heptadiene-3,5-dione];   demethoxy   curcumin   [4-hydroxy-cinnamoyl   (4-hydroxy-3- methoxycinnamoyl)  methane  and  bis-demethoxy  curcumin  [bis-(4-hydroxy  cinnamoyl methane] together make the colouring pigment in the turmeric rhizomes (see Fig. 2). The   curcumin   content   in   different   turmeric   varieties   varies   from   2–8%

(spectrophotometric estimation). However, Verghese (1999) reported the total colour in eight C. longa varieties ranging from only 2.3–3.9%, by HPLC analysis. ‘Alleppey type recorded maximum colour. The distribution of the curcuminoids is also reported to vary with different samples (Table 5) (Verghese, 1999).

In  the  pure  form  curcuminoids  separate  as  an  orange  yellow  crystalline  powder, insoluble in water, slightly soluble in ether, soluble in alcohol and in glacial acetic acid. Verghese  (1999)  is  of  the  opinion  that  the  melting  point  of  curcumin  is  an  unworthy


Table 3    Analytical specification for turmeric (whole and powder)

Sample       Moisture                    Ash                                      Starch             Crude fibre Vol. oil        Colour as                      Lead    Chromate test max.               Total                                 Acid insol.   max.                            max.      max.                   curcumin max. ppm

(% wt.)          max.             max.           (% wt)         (% wt.)        (% wt.)          min.

(% wt.)        (% wt.)                                                                    (% wt.)

Whole BP     8–10             6–9                                                   4–6              2–5                                                       – US               9                                      7                 0.5                                   6                   4                           5                                      – DDR                                                                   7                                                                                2.6               3–4                              

Powder India 10                 7                 1.5              60.0                                                                    1.5                      Negative

WHO             10                 7                 1.5                                                                                        3                      Negative



Note: The chromate test is negative if there is no violet colour developed when dilute acid soluble ash from 2 g of sample (4–5 ml) is reacted with 1 ml of 0.2% alcoholic solution of diphenyl carbazide.

Source: Govindarajan (1980).


Table 4    Nutritional composition of turmeric

Constituent                                          Quantity per 100 g

Water (g)                                             6.0

Food energy (Kcal)                             390

Protein (g)                                           8.5

Fat (g)                                                 8.9

Carbohydrate (g)                                 69.9

Ash (g)                                                6.8

Calcium (g)                                         0.2

Phosphorous (mg)                               260

Sodium (mg)                                        30

Potassium (mg)                                    2000

Iron (g)                                                47.5

Thiamine (mg)                                     0.09

Riboflavin (mg)                                   0.19

Niacin (mg)                                         4.8

Ascorbic acid (mg)                              50

Source: Peter (1999).

Fig. 2    Structures of (a) curcumin, (b) demethoxy curcumin and (c) bis-demethoxy curcumin.


Table 5    Concentration of curcuminoids in typical curcumin samples by HPLC analysis

Sample                                Curcumin   Demethoxy    bis-demethoxy Total

(%)            curcumin (%)  curcumin (%)  (%)

1. Curcumin puriss (Fluka) 53.5           17.2               9.6                   80.3

2. Curcumin crys. natural    80.8             7.1                1.0                   89.9

(Koch-light)

3. Pure curcumin (Chr. Harsen)            64.9               11.3                 6.4      82.6

4. Curcumin/(Syndiferuloyl 79.6           12.2               1.6                   93.4

methane (ICN) (1)

5. Curcumin (ICN)              58.3           16.6               7.0                   81.9

6. Curcumin (Biomol)         66.3           15.3               4.0                   85.6

7. Synthite 1                        71.0           23.2               2.8                   97.0

8. Synthite 2                        68.6           23.0               3.0                   94.6

Source: Verghese (1999).

quality  parameter  and  need  not  be  mentioned  in  any  specifications,  as  many  different melting points are reported by many workers for curcuminoids!

Curcumin exhibits strong absorption between 419 and 430 nm in organic solvents and on this property revolves the spectrophotometric methods of the American Spice Trade Association (1968) and Essential Oil Association (EOA) (1965), though now the HPLC method  is  available  (Tonnesen  and  Karlson,  1983).  The  EOA  stresses  the  fact  that

‘turmeric extracts are evaluated strictly in colour’ and this is best expressed in terms of colour value (cv), which is equivalent to ten times the specific extinction coefficient in ethanol  at  422 nm  (c.f.  Verghese,  1999).  Verghese  (1999)  further  reported  that  the specific  extinction  coefficient  in  ethanol  of  curcumin  at  420–430  nm  varies  between

1528 and 1586, of demethoxy curcumin at 420–430 nm between 1513 and 1580, and of bis-demethoxy   curcumin   at   419–430 nm   between   1565   and   1682.   By   repeated crystallization  from  ethanol,  the  dye  yielded  specific  extinction  coefficient  1596  at

425 nm in ethanol (c.f. Verghese 1999). Coupling this observation and the values already reported  in  the  literature,  specific  extinction  coefficient  1600  was  recommended  as  a reasonable  yardstick  for  assaying  curcumin  and  this  fits  the  HPLC  data  excellently

(Verghese, 1999). However, for most routine, quality control work, it is sufficient to measure the extinction

of an alcohol extract at the absorption maximum at 420–455 nm, taking the precautions of using neutral alcohol and avoiding exposure to direct sunlight, and calculate the curcumin content by using the molecular absorption value (Govindarajan, 1980).

Turmeric oil has a major role in the aroma and flavour of turmeric though the oil as such  is  not  used.  Turmeric  oil  is  comprised  of  oxygenated  sesquiterpenes  which  are accompanied   by   smaller   quantities   of   sesquiterpene   hydrocarbons,   monoterpene hydrocarbons  and  oxygenated  monoterpenes  (Purseglove  et  al.,  1981).  Among  the various constituents of the oil, sesquiterpenes, ar-turmerone and turmerone comprise 50 per cent of the oil (see Fig. 3) (Purseglove et al., 1981).

6       Use in the food industry

Turmeric powder is used in mustard paste and curry powder as both colour and aroma are important  in  these  products.  Turmeric  oleoresin  is  used  mainly  in  the  brine  pickles


Fig. 3    (a) Turmerone, (b) ar-Turmerone.

(Eiserle, 1966; Cripps, 1967) and to some extent in mayonnaise and relish formulations; in non-alcoholic  beverages such as orangeades and lemonades; gelatins;  in breading of frozen fish sticks; potato croquettes; butter and cheese in the form of powder or granules for garnishing and even in ice creams (Perotti, 1975). In all these cases, its function is predominantly to colour the product and it merely replaces the synthetic colours such as tartrazine, formerly used (Govindarajan, 1980).

In Asian countries whole, dry or fresh turmeric, ground or turmeric powder with other spices like chillies, coriander, pepper, cumin, etc., are used for making vegetable and meat dishes and soup-like dishes. Turmeric powder mixed with seasame, coconut or groundnut oil is used for pickling mango, lime, gooseberry, garlic, etc. (Govindarajan, 1980).

The  colours  in  the  Food  Regulation  Act  came  into  force  in  UK  in  1996.  Part  III, Schedule  5  of  this  Regulation  specifies  the  limits  for  curcumin  in  various  food  items

(Table 6) (Henry, 1998). Curcumin is included in the list of colours with a restricted use because of the fact that it has been allocated only a temporary, low ADI value (acceptable daily intake).  The ADI value  indicates  the  amount of a food additive  that can  be taken daily in the  diet without risk, expressed as mg/kg/bodyweight  (Henry, 1998). The  Joint Expert  Committee  on Food Additives  (JECFA) has allotted  curcumin  a  temporary  ADI value of 0–1.0 mg/kg/bodyweight/day.  Curcumin is specifically  permitted as a colour in the EU though many countries simply list it without a specification for its colour strength. Pure 95% curcumin, as it is usually obtained, is not an ideal product for direct use by the food industry since it is insoluble in water and has poor solubility in other solvents. Hence in many countries curcumin is dissolved in a mixture of food grade solvent and permitted emulsifier such as Polysorbate 80 for converting into a convenient application form. In this form the product contains about 10% curcumin. Curcumin  gives a  bright  yellow  colour  even  at  low  doses.  The  usual  dose  level  of curcumin is in the range of 5–200 ppm. Numerous blends are available commercially to suit the colour of the product (Henry, 1998). Vanilla ice cream for example is coloured with a combination of curcumin (200 ppm) and norbixin (12 ppm). Similarly in yoghurt 5 ppm curcumin will give an acceptable colour. For cakes and biscuits the required colour is achieved using a blend of curcumin (10–15 ppm) and annatto (10 ppm). Turmeric  oleoresins  although  permitted  universally  as  a  spice  oleoresin,  are  not  a permitted colour in EU (Henry, 1998). Turmeric powder, extracts and curcumin exhibit antioxidant  property  as  observed  by  the  induction  period  and  oxygen  absorption  of coconut, groundnut, safflower, sesame, mustard, cotton seed oil and ghee at 95C to 220C for  period  up  to  144 h.  In  foods,  the  antioxidant  property  of  turmeric  was  effective  in

preventing peroxide developments (Khanna, 1999).


Table 6    Limits specified for curcumin in various food items (‘Colours in Food Regulation Act

1995 Schedule 5, Part III)

Food                                                                                            Maximum level

Non-alcoholic flavoured drinks                                                  100 mg/l Candied fruits and vegetables, mostarda di frutta                                                                        200 mg/kg Preserves of red fruits  200 mg/kg Confectionery                                                                             300 mg/kg Decorations and coatings         500 mg/kg Fine bakery wares (e.g. viennoiseric, biscuits, cakes and wafers)       200 mg/kg Edible ices  150 mg/kg Flavoured processed cheese                                                       100 mg/kg Desserts including flavoured milk products                                                                                      150 mg/kg Sauces, seasonings (for example, curry powder, tandoori pickles, relishes,                                    500 mg/kg chutney and piccalilli)

Mustard                                                                                       300 mg/kg Fish paste and crustacean paste                                                                                                    100 mg/kg Pre-cooked crustaceans 250 mg/kg Salmon substitutes                                                                       500 mg/kg Surimi    500 mg/kg Fish roe      300 mg/kg Smoked fish                                                                      100 mg/kg

‘Snacks’: dry, savory potato, cereal or starch-based snack products:            200 mg/kg extruded or expanded savoury snack products

Edible cheese rind and edible casings                                        quantum satis Complete formulae for weight control intended to replace total                                                 50 mg/kg daily food intake or an individual meal

Complete formulae and nutritional supplements for use             50 mg/kg under medical supervision

Liquid food supplements/dietary integrators                               100 mg/l Solid food supplements/dietary integrators                                                                                   300 mg/kg Soups   50 mg/kg Meat and fish analogues based on vegetable proteins                                       100 mg/kg Spirituous beverages (including products less than 15% alcohol by volume),                              200 mg/l except any mentioned in Schedule 2 or 3

Aromatized wines, aromatized wine-based drinks and aromatized    200 mg/l wine-product cocktails as mentioned in Regulation (EEC) No. 1601/91,

except any mentioned in Schedule 2 or 3

Fruit wines (still or sparkling), cider (except cidre bouche) and perry          200 mg/l aromatized fruit wines, cider and perry

Source: Henry (1998).

The  fate  of  curcumin  in  vivo  is  yet  to  be  understood  thoroughly.  Studies  by  oral administration  of  curcumin  to  rats  indicated  that  curcumin  is  metabolized  to  a  certain extent in the liver and that curcumin and its metabolites are excreted via bile and faeces

(Tonnesen, 1986).

7       Functional properties

Many reviews are available on the medicinal uses of turmeric (Kirtikar and Basu, 1948; Anon., 1950; Srimal, 1993; Verghese, 1999; Khanna, 1999). In the traditional systems of medicine turmeric is used against many ailments.




The   biological   activity   of   turmeric   is   as   anti-inflammatory,   hypocholestremic, choleratic,  antimicrobial,  antirheumatic,  antibacterial,  antiviral,  cytotoxic,  spasmolytic, hypersensitive, antidiabetic and antihepato toxic (Govindarajan, 1980; Tonnessen, 1986; Velayudhan et al., 1999). Turmeric is also credited with anticancerous properties (Kuttan et al., 1985, Rao et al., 1995).

Curcuminoids,  turmeric  oil,  total  extracts  are  all  credited  with  medicinal  properties

(Khanna, 1999). However, the biological activity of the components of these constituents differ considerably (Verghese, 1999). It is reported that the proportions of curcuminoids play a considerable  role in optimum bioprotective  activity of turmeric. The  concept  of

Curcumin  C3  complex stamped  with  specific  concentration  limit  of  the  individual curcuminoid is an off shoot of this finding (Verghese, 1999).

The dried rhizome of turmeric is used widely as a spice, as a colouring agent and as a folk medicine. The yellow pigment curcumin and demethoxyylated curcumins found in both turmeric and ginger are known to possess potent antioxidant  activity (Kikuzaki  et al., 1994; Kikuzaki  and Nakatani  1993). Curcumin suppressed the oxidation of methyl linoleate   in   organic   homogeneous   solution   and   aqueous   emulsions,   soybean phosphatidylcholine  liposomal  membranes  and  rat  liver  homoganate  induced  by  free radicals (Noguchi et al., 1994). A mechanism for the dimer production is proposed and its relation  to  curcumin’s  antioxidant  activity  is  discussed  in  Masuda  et  al.  (1999).  The results indicated that the dimer is a radical-terminated product formed during the initial stage of the process.

In vitro  and in vivo studies have established the effectiveness of curcumin, volatile oil or total extracts of turmeric against many organisms such as Micrococcus pyogenous var. aureus,   Staphylococcus   sp.,   Paramacium   caudatum,   Trichophyton   gypseum, Mycobacterium   tuberculosis,   Salmonella   typhi,   Vibrio   cholerae,   Cornybacterium diphtheria, Aspergillus niger, etc. (Khanna, 1999).

Aqueous  extract,  fresh  juice  and  essential  oil  of  turmeric  are  also  credited  with biopesticidal properties (Kapoor, 1998; Saju et al., 1998; Bora and Jaya Samuel, 1999). In vitro and in vivo studies have established the efficacy of turmeric constituents against various  plant  pathogens  such  as  Ralstonia  solanacearum,  Xanthomonas  oryzae  pv. oryzae,  Helminthosporium  sacchari,  Colletotrichum  gloesporoides,  Rhizoctonia  solani, etc. Turmeric oil is also effective as a mosquito repellant, housefly deterrent and in aphid vector control (Khanna, 1999; Saju et al., 1998).

8       References

AMERICAN SPICE TRADE ASSOCIATION (ASTA). 1968. Official Analytical Methods, 2nd edn, American Spice Trade Association, New York, p. 53.

ANON.  1950. The Wealth of India. Raw Materials (Ed.) Sastri, B.N. Vol. II, CSIR, New

Delhi, pp. 402–5.

BALASUBRAMANIAN, N., KUMAR, K.R. and ANANDASWAMY, B. 1979. Packaging and storage studies  on  ground  turmeric  (C.  longa  L.)  in  flexible  consumer  packages.  Indian Spices, 16(12): 10–13.

BORA, L.C. and JAYA SAMUEL 1999. Use of medicinal plants for management of bacterial blight in rice and bacterial  wilt of tomato in Assam. In: Sasikumar, B. et al. (Ed.) Biodiversity, Conservation and Utilization of Spices, Medicinal and Aromatic Plants. Indian Institute of Spices Research, Calicut, pp. 315–21.


BURKILL,   T.H.,  1966.  A  dictionary   of  economic  products  of  the   Malay   Peninsula

Kualalampur, Ministry of Agriculture & Co-operatives, Malaysia.

CRIPPS,  H.P.,  1967.  Oleoresin  turmeric,  application  in  pickle  production.  Glass  Packer

Process, 46: 24.

EISERLE, R.J.  1966. The role of oleoresin turmeric in the pickling process. Glass Packer

Process, 45: 48.

EOA SPECIFICATION STANDARDS, NO. 271  (1965). Essential Oil Association of USA, New

York.

GOVINDARAJAN, V.S. 1980. Turmeric chemistry, technology and quality. CRC  Critical

Reviews in Food Science and Nutrition, 12: 199–301.

HENRY, B. 1998. Use of capsicum and turmeric as natural colours. Indian Spices, 35(3): 7–

14.

KAPOOR, A. 1998. Antifungal activities of fresh juice and aqueous extracts of turmeric and ginger. J. Physiol. Res.   10(1–2): 167–81.

KHANNA, N.M.  1999. Turmeric Nature’s precious gift. Curr. Sci. 76: 1351–6.

KIKUZAKI, H. and NAKATANI, N. 1993. Antioxidant effects of some ginger constituents. J. Food Sci., 58: 140710.

KIKUZAKI,   H.,   KAWASAKI,   Y.   and  NAKATANI,   N.   1994.  Structure  of  the  antioxidant compounds in ginger. In: Ho, C.-T., Osawa, T., Huang, M. T. and Rosen, R. T. (Eds) Food  Phytochemicals  for  Cancer  Prevention  II  Teas,  Spices,  and  Herbs.  ACS Symposium Series No. 547, Washington, ACS Press, pp. 237–47.

KIRTIKAR, K.R.  and BASU, B.D.  1948. Indian Medicinal Plants, Vol IV. Bishen Singh and

Mahendrapal Singh, Dehra Dun, pp. 2417–24

KRISHNAMURTHY,  M.N.,  PADMA  BAI,  R.,  NATARAJAN,  C.P.   and  KUPPUSWAMY,  S.   1976. Colour  content  of  turmeric  varieties  and  studies  of  its  processing.  J.  Food  Sci. Technol.   (India) 12: 12–14.

KUTTAN, R., BHANUMATHY, P., NIRMALA, K  and GEORGE, M. C.  1985. Potential anti-cancer activity of turmeric (C. longa L.), Cancer Lett. 29: 197–202.

MASUDA,  T.,  HIDAKA,  K.  SHINOHARA,  A.,  MAEKAWA,  T.  TAKEDA,  Y.  and  YAMAGUCHI,  H.

1999.  Chemical  studies  of  antioxidant  mechanism  of  curcuminoids:  analysis  of radical reaction products from curcumin. J Agric. Food Chem, 47: 71–7.

NOGUCHI,  N.,  KOMOU,  E.,  NIKI,  E.  and  WILLSON,  R.L.  1994.  Action  of  curcumin  as  an antioxidant against lipid peroxidation. Yukagaku, 43: 1045–51.

NAZEEM, P.A.  and  REMA MENON. 1994. Blossom  biological  and  hybridization  studies  in turmeric (C.longa L.). South Ind. Hort. 42(3): 161–7.

PEROTTI, A.G. 1975. Curcumin A little known but useful vegetable colour. Ind. Ailment. Prod. Veg. 14(6): 66.

PETER, K.V.  1999. Informatics on turmeric and ginger. Indian Spices, 36(2&3): 12–14. PURSEGLOVE, J.W.  1968. Tropical Crops: Monocotyledons. Longman, London. PURSEGLOVE, J.W., BROWN, E.G., GREEN, C.L.  and ROBIN, S.R.J.  1981. Turmeric. In: Spices,

Vol. II, Longman, New York, pp. 53280.

RAO,  C.  V.,  RIVERSON,  A.,  SIMI,  B.  and  REDDY,  B.  S.  1995.  Chemoprevention  of  colon carcinogenesis  by  dietary  curcumin,  naturally  colouring  plant  phenolic  compound. Cancer Res. 55: 259–66.

RAMA RAO, M., RAMA CHENNA, REDDY, K. and SUBBARAYADU, M. 1975. Promising turmeric types of Andhra Pradesh. Indian Spices, 12(2): 2–5.

RIDLEY, H.N. 1912. Spices. Macmillan, London.

SAJU,  K.A.,  VENUGOPAL,  M.N.  and  MATHEW,  M.J.  1998.  Antifungal  and  insect  repellant activities of essential oil of turmeric (C. longa L.). Curr. Sci. 75: 660–2.


SASIKUMAR, B., RAVINDRAN, P.N., JOHNSON K. GEORGE  and PETER, K.V.  1996. Ginger and turmeric  breeding  in  Kerala.  Proc.  Sem.  Crop  Breeding  in  Kerala  (Ed.)  P.I. Kuriachan, Dept. of Botany, University of Kerala, Kariavattom, pp. 65–72.

SIVADASAN, C.R. 1998. Import regulation and quality requirements for spices in USA. In: Quality Requirement of Spices for Export (Eds.) Sivadasan, C.R. and Madhusoodana Kurup, P. Spices Board, Kochi, pp. 5–20.

SRIMAL, R.C.  1993. Curcumin a modern drug. Indian Spices, 30(2&3): 21 and 25.

TONNESEN,   H.H.   1986.   Chemistry,   stability   and   analysis  of   curcumin:   A  naturally occurring drug molecule. Oslo, 91.

TONNESEN,  H.H.   and  KARLSON,  J.   1983.  High  performance  liquid  chromatography  of curcumin and related components. J. Chromatography, 259: 36771.

VELAYHUDAN,  K.C.,  MURALIDHARAN,  V.K.,  AMALRAJ,  V.A.,  GAUTAM,  P.L.,  MANDAL,  S.  and DINESH  KUMAR.  1999.  Curcuma  Genetic  Resources.  Scientific  Monograph  No.  4. National Bureau of Plant Genetic Resources, New Delhi.

VERGHESE, J.  1999. Curcuminoids, the magic dye of C. longa L. rhizome. Indian Spices,

36(4): 19–






Politica de confidentialitate



DISTRIBUIE DOCUMENTUL

Comentarii


Vizualizari: 1362
Importanta: rank

Comenteaza documentul:

Te rugam sa te autentifici sau sa iti faci cont pentru a putea comenta

Creaza cont nou

Termeni si conditii de utilizare | Contact
© SCRIGROUP 2022 . All rights reserved

Distribuie URL

Adauga cod HTML in site