Scrigroup - Documente si articole

Username / Parola inexistente      

Home Documente Upload Resurse Alte limbi doc  

BulgaraCeha slovacaCroataEnglezaEstonaFinlandezaFranceza


Tamarind Production and Sources


+ Font mai mare | - Font mai mic


1       Introduction

Tamarindus  indica  L.,  commonly  known  as  tamarind  tree  is  one  of  the  most  important multipurpose tree species in the Indian sub-continent.  It is a large evergreen tree with an exceptionally  beautiful  spreading  crown,  and  is  cultivated  throughout  almost  the  whole country, except in the Himalayas and western dry regions (ICFRE, 1993, Rao et al., 1999). The tamarind fruit pulp has been an important culinary ingredient in India for a very long  time.  Almost  all  parts  of  the  tree  find  some  use  or  other  in  food,  chemical, pharmaceutical and textile industries, and as fodder, timber and fuel (Dagar et al., 1995;

George and Rao, 1997).

Tamarind is thought to have originated in Madagascar (Von Maydell, 1986; Hocking,

1993).  It  is  now  cultivated  throughout  semi-arid  Africa  and  South  Asia,  where  it  has become  naturalized  in  several  regions.  It  has  been  planted  extensively  in  Bangladesh, India, Myanmar, Malaysia, Sri Lanka, Thailand and several African, Australian, Central American and South American countries. The fruit became known in Europe during the Middle Ages. Tamarind fruit was at first thought to be produced by an Indian palm, as the name  tamarind  comes  from  a  Persian  word  ‘Tamar-I-hind’,  meaning  date  of  India.  Its name ‘amlika in Sanskrit indicates its ancient presence in the country (Mishra, 1997). In Myanmar  it  is reported as  one  of the  commonest  village trees  in  the  dry zone  (Troup,

1921). Commercial plantations are reported in Belize, Central American countries and in north Brazil (Sharma and Bhardwaj, 1997).

In India, tamarind is known by a wide variety of vernacular names: Assamese Tetuli; Bengali   amli,  nuli,  textili  tentul;  Gujrati   amali,  ambali;  Hindi   ambli,  amli,  imli, tamarulhindi; Kannada hunase, hunase-mara, hunse; Malayalam puli; Marathi amli, chinch, chitz; Oriya koya, tentuli; Punjabi imli; Parsian Tamarhindi; Tamil Puli, pulia-maram;  Telugu   Chinta;  Urdu   imli.  In  Arabic  it  is  Tamre-Lindi,  in  French  – tamarind,  in  Spanish  and  Portuguese   tamarindo  and  English-speaking  people  call  it tamarind (Mishra, 1997).

The   genus   Tamarindus   is   a   monotypic   genus   and   belongs   to   the   sub-family

Caesalpinioideae of the family Leguminosae (Fabaceae). Tamarind is a moderate-sized

to large, evergreen tree, up to 24 m in height and 7 m in girth. The morphology of the tree in detail has been described by several authors (Singh, 1982; Parkash and Drake, 1985; George and Radhakrishna, 1993; ICFRE, 1993; Dubey et al., 1997). The most useful part is  the  pod.  Pods  are  7.5–20 cm.  long,  2.5 cm  broad  and  1 cm  thick,  more  or  less constricted between the seeds, slightly curved, brownish-ash coloured, scurfy. There are

3–12 seeds in each pod contained in loculi, enveloped by a tough, leathery membrane, the so-called  endocarp.  Outside  the  endocarp  is  the  light-brownish,  red,  sweetish  acidic, edible pulp, traversed by a number of branched, ligneous strands. The outermost covering of the pod is fragile and easily separable. The pods begin to ripen from February to April

(Cowen,   1970;   Duke,   1981;   1CFRE,   1993;   Dubey   et   al.,   1997;   Choudhary   and

Choudhary, 1997; Rao et al., 1999).

2       Production

Rough  estimates  are  available  on  production  of  tamarind  in  India.  One  estimate  has production at over 3 lakh tonnes in 1994–95. Tamarind cultivation is concentrated in the states of Tamil Nadu, Andhra Pradesh, Karnataka, Orissa and Kerala (Jambulingam and Fernandes, 1986; Anon., 1997; George and Rao, 1997; Rao, 1997; Vennila and Kingsley,


2.1       Sources

Among  52  spices  under  the  purview  of  the  Spices  Board  (Govt.  of  India),  tamarind occupies sixth position in terms of export earnings (George and Rao, 1997). It is exported as fresh, dry and paste. Export of tamarind seed also takes place both in unground and ground forms. Export of tamarind and seed in different forms for five years from 1992–93 is  provided  by  Anon.  (1996a,  1996b).  Tamarind  products  are  exported  to  around  60 countries.

Tamarind fruits begin to ripen during the months of February–March. The pods are allowed to ripen on the tree until the outer shell is dry and thereafter harvested and the shells are removed manually. The pulp is separated from the seeds and fibres and dried in the sun to reduce its moisture level. Then it is packed in palm leaf mats, gunny bags or polythene  bags  and  stored  in  a  dry  place.  The  average  composition  of  the  pod  is accounted  as  55%  pulp,  34%  seeds  and  11%  shell  and  fibres  (Ishola  et  al.,  1990; Shankaracharya, 1997, 1998). All these operations are manual and therefore very labour- intensive.  Mechanical  methods  for  extracting  pulp  (Benero  et  al.,  1972),  chemical composition of juice concentrates (Nagaraja et al., 1975), preservation of sweet tamarind in  Thailand  (Chumsai-Silavanich  et  al.,  1991)  and  physico-chemical  composition  of commercial tamarind powder (Manjunath et al., 1991) have been reported.

A  tamarind  dehuller  was  designed  and  developed  at  the  Post  Harvest  Technology

Scheme (ICAR), UAS, Bangalore with a hulling capacity of 500 kg/h (Ramkumar et al.,

1997). The hulling efficiency of the machine developed was reported to be 80% for the large size curved fruits, while for the small fruits, the efficiency was only 58%.

Pulp  loss  during  storage  was  very  low  in  black  polyethylene  (0.18%)  and  plastic

(0.17%) compared to phoenix mat (1.35%) and metal (1.53%) (Ramakumar et al., 1997). Feungchan et al. (1996) conducted studies on factors related to colour change of tamarind pulp  from  brown  to  black  to  yellow  in  storage  and  recommended  mixing  of  10% powdered  salt  and  cold  storage  to  prevent  this.  Based  on  observations  on  post-harvest

physiological and chemical changes in tamarind fruit, Lakshminarayana and Hernandez- Urzon  (1983)  had  suggested  that  tamarind  may  be  processed  within  one  week  after harvest in order to get maximum yield.

Tamarind  pulp/concentrate  is  one  of  the  essential  components  in  Indian  culinary habits.  It  is  a  common  article  of  trade  and  is  preserved  and  stored  for  marketing  in  a number of ways (Lewis et al., 1957; Lewis and Neelakantan, 1959, 1964; Benero et al.,

1972;   Patil   and   Nadagouder,   1997).   Patil   and   Nadagouder   (1997)   reported   that commonly,  the  pulp  freed  from  fibre  and  seed  is  mixed  with  10%  salt  and  beaten down with mallets so as to exclude air and packed in gunny bags, lined with palm leaf- matting. In another process, the salted pulp is trodden into a mass and made into balls, which are exposed to the sun and dew for about a week. Concentrates of the pulp, more or less jelly-like in consistency, are also marketed.

3       Main uses

3.1       Pulp

The  fruit-pulp  is  the  chief  agent  for  souring  curries,  sauces,  chutneys  and  certain beverages throughout the greater part of India. Tamarind fruit is also reported to be used as  a  raw  material  for  the  preparation  of  wine-like  beverages  (Giridharlal  et  al.,  1958; Sanche, 1985; Latino and Vega, 1986; Benk, 1987). According to the research findings of CFTRI (Central Food Technological Research Institute), Mysore, India, the pulp could be preserved well for 6–8 months, without any treatment, if it is packed in airtight containers and stored in a cool dry place (Shankaracharya, 1997). The edible portion of the ripe pod reportedly contains moisture 63.3–68.6%; protein 1.6–3.1%; fat 0.27–0.69%; total sugars

22.0–30.4%;  sucrose  0.10.8%;  cellulose  2.0–3.4%  and  ash  1.2–1.6%.  The  dried  pulp contains moisture 20.9–21.3%; protein 3.1–5.0%; fat 0.1–0.6%; total carbohydrates 67.4–

70.7%; fibre 5.6–18.3%; tartaric acid 8–18%; invert sugars 3040%; ash 2.4–2.9% and

270  calories.  Lewis  et  al.  (1957b),  Shankaracharya  (1997,  1998),  remarked  that  the sweetness of the so-called red-variety of tamarind might be due to the presence of lesser amounts of free-acids in the pulp. According to these investigators the colour of the red- tamarind  pulp  is  due  to  an  anthocyanin  pigment  called  chrysanthemin.  The  common variety  contains  a  leucocyanidin  pigment.  Nearly  60  volatile  compounds  have  been detected in tamarind pulp (Zhang and Ho, 1990; Shankaracharya, 1998).

3.2       Concentrate

Juice concentrate of tamarind is produced and marketed in India and abroad (Raghuveer,

1997). The product is promoted as being very convenient for culinary purposes and the food industry. The CFTRI, Mysore, has developed processes for the manufacture of juice concentrate  and  powder  of  the  pulp  (Sankaracharya,  1998).  Formulae  for  preparing spiced   sauces   and   beverages   from   the   pulp   have   also   been   reported   (Patil   and Nadagouder, 1997). The approximate composition of the concentrate according to CFTRI report is as follows: total tartaric acid 13%; invert sugars 50%; pectin 2%; protein 3%; cellulosic material 2%; and moisture 30%. Tamarind juice concentrate was found to be more viscous than sucrose solutions (Manohar et al., 1991).

3.3       Seeds

Following  the  estimation  of  the  composition  of  seeds  and  evaluation  of  its  properties, Marangoni et al. (1988) opined that tamarind seeds are potential sources of food or food ingredients. They recorded that seeds formed about 35% of the whole fruit with 30% testa and 70% endosperm (kernel). When analysed seeds were found to contain 17.1–20.1% protein;  6.0–8.5%  fat;  65.1–72.2%  carbohydrates;  0.7–4.3%  crude  fibre  and  2.3–3.2% ash.  The  chemical  composition  and  nutritive  value  of  tamarind  seeds  and  kernels  was determined  by several workers (Bose et al., 1954; York et al., 1993; Siddhuraju et al.,

1995; Patil and Nadagouder, 1997). Bhattacharya et al. (1993, 1994a) reported that the kernel  protein  is  rich  in  lysine,  glutamic  acid,  aspartic  acid,  glycine,  leucine  and potassium,  but  deficient  in  sulphur-containing  amino  acids.  Dehusked  tamarind  seeds have  been  found  to  be  a  rich  source  of  pectin,  the  jelly-forming  constituent  of  many fruits,  vegetables,  seeds,  etc.  (Kumar,  1997).  According  to  him  proper  utilization,  can give an impetus to the jam and jelly industry which until now was dependent upon the imported jelly powder, and can also lead to the development of various other industries which use pectin as one of its raw materials. Methods of isolation and purification of the pectin have been described and its possible commercial uses indicated (Kumar, 1997).

3.4       Kernel powder

The  powder,  commercially  known  as  tamarind  kernel  powder  (TKP),  is  found  to  be extensively used as a sizing material in the textile industry as well as in the food industry

(Rao and Subramanian, 1984; Bal and Mukherjee, 1994; Patil and Nadagouder, 1997). These analysts attribute the sizing properties of TKP to the presence of a polysaccharide

(called jellose) to the extent of 6%. Other reported constituents are proteins, fibre, fat and inorganic  salts  and  some  free  sugars  and  tannins.  The  jellose  is  also  much  used  in confectionery, especially in the United States, and some European countries. Its use has been  recommended  in  preparing  jujubes,  as  a  stabilizer  in  ice  creams  and  mayonnaise

(Patil and Nadagouder, 1997). Use of white TKP in three food products, jelly, fortified bread and biscuit  was also detailed  by Bhattacharya (1997), Bhattacharya  et al. (1991,

1994b). It can be used in cosmetics, and in pharmaceutical and insecticidal preparation. It can  also  be  used  as  an  adhesive  in  bookbinding,  cardboard  manufacture  and  plywood industry,  and  in  sizing  and  weighing  compositions  in  the  leather  industry  (Daw  et  al.,

1994;  Patil  and  Nadagouder,  1997;  Prabhanzan  and  Ali,  1995).  The  fatty  oil  from  the kernels resembles peanut oil and is reported to be useful in the preparation of paints and varnishes and for burning lamps which can be extracted by solvent extraction  (Pitka et al., 1977; Reddy et al., 1979; Patil and Nadagouder, 1997).

3.5       Seed testa

The testa is reported to contain 40% water solubles, 80% of which is a mixture of tannin and colouring matter (FRI, 1955). In the production of TKP or the jellose, large quantities of testa are left as a residual by-product. The use of testa in dyeing and tanning has been suggested.  Several  authors  (Rao  and  Srivastava,  1974;  Glicksman,  1986;  Tsuda  et  al.,

1994,  1995;  Sankaracharya,  1998)  have  suggested  that  seed  coat,  a  by-product  of tamarind gum industries can be used as a safe and low-cost antioxidant for increasing the shelf-life of foods by preventing lipid peroxidation. Studies have been carried out on the utilization  of  spent  (detanned)  tamarind  seed  testa  as  a  substrate  to  grow  Pleurotus florida,  in  order  to  convert  organic  wastes  into  biofertilizer  and  also  to  assess  the

suitability of this testa as a substrate along with spent wattle. The yield of mushroom was

17% when wattle-tamarind seed testa was used. The spent material after harvesting the mushroom  degraded  easily  in  the  soil  indicating  its  suitability  as  organic  manure

(Madhulatha and Pitchai, 1997).

3.6       Minor uses

The tender leaves, flowers and the young seedlings are eaten as a vegetable. The analysis of  tender  leaves  gave:  moisture  70.5%;  protein  5.8%;  fat  2.1%;  fibre  1.9%;  other carbohydrates 18.2% and minerals 1.5%. The mineral and vitamin constituents (in mg/

100 g) were as follows: calcium, 101; magnesium, 71; phosphorus, 140; iron, 5.2; copper,

2.09;  chlorine,  94;  and  sulphur,  63;  thiamine,  0.24;  riboflavia,  0.17;  niacin,  4.1;  and vitamin C (Anon., 1976; Karuppaiah et al., 1997). Young leaves of T. indica yielded 1.16 lipids   (dry   wt.)   with   chloroform-methanol   and   differentiated   the   neutral   lipids, glycolipids and phospholipids (Sridhar and Lakshminarayana, 1993).

The  leaves  are  eaten  by  goats  and  cattle.  The  flowers  are  considered  to  be  a  good source of honey (Ramanujam and Kalpana, 1992) which is rich golden in colour, but has slight acidity peculiar to its flowers. The tree also yields a valuable timber and the wood is used mostly for agricultural implements, tool-handles, wheels, mallets, rice pounders, and oil-mills and for turnery.

4       Functional properties

Medicinal  values  have  been  claimed  for  various  preparations  from  the  fruit,  leaves, flowers, bark such as the antiscorbutic properties of the pulp, laxative action of the fruit juice and diuretic properties of leaf sap (Ghosh, 1987; Lakshmanan and Narayanan, 1990; Lewis  et  al.,  1970;  Mustapha  et  al.,  1996;  Rajan  et  al.,  1989;  Rao,  1995;  Sano  et  al.,

1996).  An  infusion  of  the  leaves  is  said  to  be  cooling  and  useful  in  bilious  fever.  A poultice of the fresh leaves is applied to swellings and boils, and for relieving pain, and that of the flowers in inflammatory infections of the conjunctiva. The bark is astringent and is given in diarrhoea; in lotions and poultices, it is also applied to sores and boils. In some countries, the bark is reported to be prescribed in asthma, amenorrhoea, and as a tonic and febrifuge (Anon., 1976).

The treatment of salted dried fish by TKP was found to be the best in preserving the quality  of  salted  fish  (Shetty  et  al.,  1996).  While  investigating  the  nutritive  value  of kernel proteins Sano et al. (1996) and Patil and Nadagouder (1997) remarked that it is comparable to that of cereal proteins based on their observations that replacement of 25% or less of rice by this kernel powder produced a significant improvement in the overall nutritive value of rice diet.

5       Quality issues

Tamarind has  many  problems  associated  with  quality  parameters  due  to  high  moisture level  and  seed,  fibre  and  rind  contents.  Tamarind  is  reported  to  be  adulterated  with foreign matter which are both organic and inorganic in nature. They are considered to be due to poor post-harvest management  practices including processing (Rao and George,

1996;  George  and  Rao, 1997).  Directorate  of  Marketing  and  Inspection  and  Bureau  of

Table 1    Agmark specifications (%/wt max) tamarind seedless Character/grade Special A         B                                        C Moisture   15                17                20  20

Seed content                     5                10                15                20

Foreign matter (organic)    4                  6                  8                 10

Foreign matter (inorganic) 1                  1.5               2                  2

Table 2    Agmark specifications (%/wt max) tamarind dry Character/grade         Special A                            B Seed content    35                        40      45

Fibres                    6                          8                        10

Rind                      3                                   4                 6

Insect damage       2                                   3                 5

Moisture              15                        20                        25

Table 3    Agmark specifications (%/wt max.) tamarind seed Character/grade      Special A Extraneous matter              1                                      2

Damaged and discoloured  2                                      5

Wt/lit                               900                                  800

Moisture                             9                                     10

Indian  Standards  have  prescribed  quality  specifications  for  seedless  tamarind  (Table

1),  dry  tamarind  (Table  2)  and  tamarind  seed  (Table  3)  (Anon,  1996c).  The

Indian  Standard  specifications  are  available  for  tamarind  juice  concentrate  (IS:5955,

1993),  pulp  (IS:6364,  1993),  for  kernel  oil  (IS:189,  1977),  IS:  511,  1962  for  kernel powder and IS 9004, 1978 for seed testa.

6       References

ANON.  (1976),  ‘Tamarind’.  In  The  Wealth  of  India  (Publications  and  Informations

Directorate, CSIR Vol X, 114–22. ANON. (1996a), Spices Export Revie w, 1995–96. Spices Board, Cochin, India. ANON. (1996b), Spices Statistics. Spices Board, Cochin, India. ANON..  (1996c), Agmark Grade Specifications for Spices. Spices Board, Cochin, India. ANON.  (1997),  Area  and  Production  of  Spices  in  India  and  the  World.  Spices  Board,

Cochin, India.

BAL  S  and  MUKHERJEE  R  K  (1994),  ‘Functional  and  nutritional  properties  of  Tamarind kernel protein’,   Food Chem, 49(1), 1–9.

BENERO J R, RODRIGUEZ A J and COLLAZO-DE-RIVERA A (1972), ‘Tamarind’, Jour. Agri. of the Univ. of Puerto-Ric o, 56(2), 185–6.

BENK E (1987), ‘Tropical and subtropical wine-like beverages’, Alcohol Industrie 100, 87,


BHATTACHARYA S (1997), ‘Utilisation of Tamarind Seed Kernel in Food Industry’, Proc. Nat. Sym. on Tamarindus indica L,   Tirupathi (A.P.), organized by Forest Dept. of A.P. India, 27–28 June, 1997, pp. 162–8.

BHATTACHARYA S,  BAL  S.,  MUKHERJEE  R  K  and  BHATTACHARYA, S  (1991),  ‘Rheological behaviour  of  tamarind  (Tamarindus  indica)  kernel  powder  suspension’,  J.  Food Engineering, 13, 151–8.

BHATTACHARYA S, BAL S, MUKHERJEE R K  and BHATTACHARYA S  (1993), ‘Some physical and   engineering   properties   of   tamarind   (Tamarindus   indica)  seed,   J.   Food Engineering, 18, 77–89.

BHATTACHARYA S, BAL S, MUKHERJEE R K and BHATTACHARYA S (1994a), ‘Studies on the characteristics of some products from tamarind (Tamarindus indica) kernel’, J. Food Science and Technology, 31(5), 372–6.

BHATTACHARYA S, BAL S, MUKHERJEE R K and BHATTACHARYA S (1994b), ‘Functional and nutritional   properties   of   tamarind   (Tamarindus   indica)   kernel   protein,   Food Chemistry, 49, 1–9.

BOSE S M, SWAMINATHAN M  and SUBRAMANYAM V  (1954), ‘Nutritive value of Tamarind seed’, Bull. Cent. Fd. Technol. Res. Inst., 3, 67–8.

CHOUDHARY   P   and   CHOUDHARY   S   S   (1997),   ‘Chemocytomorphological   studies   in Tamarindus  indica.  Proc.  Nat.  Sym.  on  Tamarindus  indica  L,    Tirupathi  (A.P.), organized by Forest Dept. of A.P., India, 27–28 June, 1997, pp. 231–4.


‘Tamarind’, Food,   21(1), 94–112.

COWAN D Y  (1970) ‘Tamarind’. In Flowering Trees and Shrubs in India. Thacker & Co. Ltd, Rampart Row Fort, Bombay, 51–2.

DAGAR J C, SINGH G  and SINGH N T  (1995), ‘Evolution of crops in agroforestry with teak

(Tectoma grandis), maharukh (Ailanthus excelsa) and tamarind (Tamarindus indica) on reclaimed salt-affected soils’, Journal of Tropical Forest Science, 7(4), 623–34. DAW Z Y, EL GIZAWY S A and SAID A M B (1994), ‘Microbiological evaluation of some local juices and drinks’, Chemic Mikrobiologic Technologic der Lebensmittel, 16(1–2), 8–15. DUBEY  P,  MISRA  C  M,  SINGH  S  L   and  BURFAL  B  S   (1997),  ‘Relative  Performance  of Tamarindus Indica Linn. on ‘‘Usar’ Soils’, Proc. Nat. Sym. on Tamarindus indica L., Tirupathi (A.P.), organized by Forest Dept. of A.P., India, 27–28 June, 1997, pp.


DUKE J A  (1981) Handbook of Legumes of World Economic Importance, Plenum Press, New York, 268–71.


Plant Regulators on Fruit Setting’, Thai J. Agric. Science, Special Issue 1, 48–51.

FRI  (1955). ‘Tamarind seed has many uses’, Indian Farming, (8), 21–2, 24.

GEORGE C K  and RADHAKRISHNAN V V  (1993), Tree Spices Trees and Tree Farming, P. K. Thampan, Peckay Tree Crops Development Foundation, Cochin.

GEORGE C K  and RAO Y S  (1997), ‘Export of Tamarind from India’, Proc. Nat. Sym. on

Tamarindus indica L., Tirupathi (A.P.), organized by Forest Dept. of A.P., India, 27–

28 June, 1997, pp. 156–61.

GHOSH B (1987), ‘Some unreported medicinal uses of plants used by the tribals of district

Begusarai, Bihar, India’, Jour. Econ. Taxon Bot., 10(1), 187–90.

GIRIDHARLAL,  DAS  D  P  and  JAIN  N  L  (1958),  ‘Tamarind  beverage  and  sauce’.  Ind.  Fd. Packer, 12, 13–16.

GLICKSMAN M  (1986), ‘Tamarind seed gum’. In Food Hydrocolloids. Ed M. Glicksman, Vol III, CRC Press, Boca Raton.

HOCKING D  (1993), Trees for Drylands, Oxford and IBH Pub .Co, pp 305–8.

ICFRE  (1993),  Tamarind  (Tamarindus  indica  L.).  Technical  bulletin,  Forest  Research

Institute, Dehradun, India, p. 16.

IS : 511 (1962), Tamarind kernel powder for jute and textiles. Bureau of Indian Standards, New Delhi.

IS:  189  (1977),  Tamarind  kernel  powder  for  cotton  and  jute  textiles.  Bureau  of  Indian

Standards, New Delhi.

IS: 9004  (1978), Tamarind seed testa. Bureau of Indian Standards, New Delhi. IS : 5955  (1993) Tamarind concentrate. Bureau of Indian Standards, New Delhi. IS : 6364  (1993) Tamarind pulp. Bureau of Indian Standards, New Delhi.

ISHOLA M M,. AGBAJI E B and AGBAJI A S (1990), A chemical study on Tamarindus indica

(Tsamiya) fruits grown in Nigeria’, Journal of the Science of Food and Agriculture,

51(1), 141–3.

JAMBULINGAM  R   and  FERNANDES  E  C  M   (1986),  ‘Multipurpose  trees  and  shrubs  on farmlands in Tamil Nadu State (India)’, Agroforestry Systems, 4(1), 17–32.

KARUPPAIAH  P,  PRAKASH  M  and  MANIVANNAN  K  (1997),  ‘Studies  on  the  Biochemical Constituents of Tamarindus Indica Tender Leaves’, Proc. Nat. Sym. on Tamarindus indica  L,  Tirupathi  (A.P.),  organized  by  Forest  Dept.  of  A.P.,  India,  27–28  June,

1997, pp. 235–7.

KUMAR  V  (1997),  ‘Tamarind  Seed   A  Valuable  Source  of  Commercial  Pectin’.  Proc. Nat. Sym. on Tamarindus indica  L, Tirupathi  (A.P.), organized  by Forest Dept. of A.P., India, 27–28 June, 1997, pp. 192–7.

LAKSHMANAN K K and NARAYANAN A S S (1990), ‘Antifertility herbals used by the tribals in Anaikkatty Hills, Coimbatore Dist., Tamil Nadu, India’, J. Econ. Taxonomy and Botany, 14(1), 171–3.

LAKSHMINARAYANA  S  and  HERNANDEZ-URZON  H  Y  (1983),  ‘Post  harvest  physiological and  chemical  changes  in  tamarind  fruit  (Tamarindus  indica  L)’,   Tecnologma  de Alimentos (Mexico), 18(6), 22–7.

LATINO S and VEGA (1986), ‘Wines from tropical fruits’, Boletin Techico-Labal, 7, 13–17.

LEWIS  Y  S,  DWARAKANATH  C  T  and  JOHAR  D  S  (1957a), Utilization  of  tamarind  pulp,

Jour. of Scientific and Industrial Research, 13A, 284.

LEWIS Y S, DWARAKANATH C T and JOHAR D S  (1957b) ‘Further Studies on Red Tamarind’,

Current Science, 26, 394–5.

LEWIS Y S, MENON P G K, NATARAJAN C P  and AMLA B L  (1970), ‘Tamarind concentrate’,

Ind. Fd. Packer, 24, 18–20.

LEWIS Y S  and NEELAKANTAN S  (1959), ‘Synthesis of tartaric  acid in Tamarind leaves,

Curr. Sci., 28, 152.

LEWIS Y S and NEELAKANTAN S (1964), ‘The Chemistry, Biochemistry and Technology of

Tamarind’, Jour. Sci. Ind. Res, 23, 204–6.

MADHULATHA  W   and  PITCHAI  S   (1997),  ‘Detanned  Tamarind  Seed  Testa   A  New Substrate for Pleurotus’, Proc. Nat. Sym. on Tamarindus indica L, Tirupathi (A.P.), organized by Forest Dept. of A.P., India, 27–28 June, 1997, pp. 175–7.


‘Physicochemical composition of Tamarind powder’, Ind. Fd. Packer, 45, 39–42. MANOHAR  B,  RAMAKRISHNA  P,  UDAYASANKAR  K  (1991),  ‘Some  physical  properties  of tamarind (Tamarindus indica L.) juice concentrates’, Jour. Food Eng. 13(4), 241–58. MARANGONI A, ALLI I  and KERMASHA S  (1988), ‘Composition and properties of seeds of

the tree legume, Tamarindus indica’,   Jour. Food Science, 53, 1452–5.

MISHRA R N  (1997), Tamarindus Indica L: An Overview of Tree Improvement’,  Proc.

Nat. Sym. on Tamarindus indica L,   Tirupathi (A.P.), organized by Forest Dept. of

A.P., India, 27–28 June, 1997, pp. 51–8.

MUSTAPHA A, YAKASAI I A  and AGUYE I A  (1996), ‘Effect of Tamarindus indica L on the bioavailability  of  aspirin  in  healthy  human  volunteers’,  European  Jour.  of  Drug Metabolism and Pharmacokineties, 21(3), 223–6.

NAGARAJA  K  V,  MANJUNATH  M  N  and  NALINI  M  L  (1975),  ‘Chemical-composition  of commercial Tamarind juice concentrate’, Ind. Fd. Packer, 29, 17–20.

PARKASH   R   and   DRAKE   H   (1985),   Some   Favourite   Trees   for   Fuel   and   Fodder.

International Book Distributors, Dehradun.

PATIL  S  J  and  NADAGOUDER  B  S  (1997),  ‘Industrial  Products  from  Tamarindus  Indica’, Proc. Nat. Sym. on Tamarindus indica L, Tirupathi (A.P.), organized by Forest Dept. of A.P., India, 27–28 June, 1997, pp. 151–5.

PITKA P M, SINGH P P  and SRIVASTAVA H C  (1977), ‘Fatty acid composition of Tamarind kernel oil’, Jour. Am. Oil Chem. Soc, 54, 592–4.

PRABHANZAN H  and ALI SL  (1995), ‘Studies on rheological properties of tamarind kernel powder, its derivatives and their blends with maize starch’, Carbohydrate Polymers,

28(3), 245–53.

RAGHUVEER  P  (1997),  ‘Market  survey  on  tamarind  products  with  special  emphasis  on tamarind   paste’,   Proc.  Nat.   Sym.   on   Tamarindus  indica.  L,   Tirupathi   (A.P.), organized by Forest Dept. of A.P., India, 27–28 June, 1997, pp. 184–7.

RAJAN A, SREEKUMARAN T, ABRAHAM M J and VIJAYAKUMAR V (1989), ‘An assessment of the goitrogenic effect of tamarind seed meal Tamarindus indica, Kerala Jour. Vet. Sci., 20(1), 40–3.


(1997),  ‘Development  of  a  Tamarind  Dehuller  and  Short-term  Storage  of  Pulp’, Proc.  Nat.  Sym.  on  Tamarindus  indica  L.,  Tirupathi  (A.P.),  organized  by  Forest Dept. of A.P., India, 27–28 June, 1997, pp. 145–50.

RAMUNAJAM C G K and KALPANA T P (1992), Tamarindus indica L., an important forage plant for Apis florea F. in south Central India’, Apidolozie, 23(5), 403–13.

RAO  K  H  and  SUBRAMANIAM  N  (1984),  Nitrogen  solubility  and  functional  properties  of tamarind seed kernel proteins. In Proceedings of the National Symposium on Protein Foods and Feeds. Madras, India, pp. 67–87.

RAO P S  and SRIVASTAVA H C  (1974), ‘Tamarind’. In Industrial Gums. Academic Press, New York, pp. 370–441.

RAO Y S  (1995), ‘Tamarind Economics’, Spice India, 8, 1–11.

RAO  Y  S  (1997),  ‘Cumbum-Lower  Camp  Variety  of  Tamarind   A  Boon  to  Farmers’, Proc. Nat. Sym. on Tamarindus indica L, Tirupathi (A.P.), organized by Forest Dept. of A.P., India, 27–28 June, 1997, pp. 124–6.

RAO Y S and GEORGE C K (1996), ‘Tamarind Ideal for Rainfed Area’, The Hindu, India,

13 June.

RAO,  Y  S,  MARY  MATHEW,  K  and  POTTY  S  N  (1999),  ‘Tamarind  Tamarindus  indica  L.) Research   A Review’, Ind. Jour. of Arecanut, Spices and Medicinal  Plants, 1(4),


REDDY G S, JAGANMOHAN RAO S, ACHUTARAMAYYA D, AZEEMUDDIN G and TIRUMALA RAO S  D  (1979),  ‘Extraction,  characteristics,  and  fatty  acid  composition  of  Tamarind kernel oil’, Jour. Oil. Technol. Assoc., India, 11, 91–3.

SANCHEZ P C (1985), ‘Tropical fruit wines: A lucrative business’. Research at Los Banos

3, 10–13 (FSTA : 86-05-H 0063).

SANO   M,   MIYATA   E,   TAMANO   S,   HAGIWARA   A,   ITO   N,   SHIRAI   T   (1996),   ‘Lack   of

carcinogenicity  of  tamarind  seed  polysaccharide  in  B6C3F1  mice’.  Food  Chem. Toxicol., 34(5), 463–7.

SHANKARACHARYA  N  B  (1997),  ‘Chemical  and  Technological  Aspects  of  Tamarindus Indica Fruit.’, Proc. Nat. Sym. on Tamarindus indica L, Tirupathi (A.P.), organized by Forest Dept. of A.P., India, 27–28 June, 1997, pp. 226–30.

SHANKARACHARYA N B (1998), ‘Tamarind Chemistry, Technology and Uses a critical appraisal, Jour. Food Technol, 35(3), 193–208.

SHARMA  S  and  BHARDWAJ  R  (1997),  ‘Tamarind   A  Suitable  Fruit  Crop  for  Dry  Arid Regions’, Proc. Nat. Sym. on Tamarindus indica L, Tirupathi (A.P.), organized by Forest Dept. of A.P. India, 27–28 June, 1997, pp. 4–6.

SHETTY C S, BHASKAR N, BHANDARY M H, RAGHUNATH B S (1996), ‘Effect of film-forming genus in the preservation of salted and dried Indian mackerel (Rastrelliger Kanazurta Curier), Journal of the Science of Food and Agriculture, 70(4), 453–60.

SIDDHARAJU   P,   VIJAYAKUMARI   K   and   JANARDHANAN   K   (1995),   ‘Nutritional   and antinutritional  properties  of  the  under  exploited  legumes  Cassia  laerijata  wild  and Tamarindus  indica  L’,  Journal  of  Food  Composition  and  Analysis.  An  official publication of the United Nations University, International Network of Food Data Systems, 8(4), 351–62.

SINGH R V  (1982), Fodder Trees of India, Oxford and IBH Pub. Co, New Delhi, India. SRIDHAR R and LAKSHMINARAYANA G (1993), ‘Lipid classes, fatty acids, and tocopherols of leaves of six edible plant species, Jour. Agri Food Chem., 41(1), 61–3.

TROUP  (1921), In: Silviculture of Indian Trees, Vol. IV. Leguminosae. pp 231–5.

TSUDA T, MIZUNO K, OHSHIMA K, KAWAKISHI S  and OSAWA T  (1995), Superential  carbon dioxide  extraction of  antioxidative  components from  tamarind  (Tamarindus indica L.) seed coat, Jour. of Agricultural and Food Chemistry, 43(11), 2803–6.


‘Antioxidative  components isolated  from the  seed of tamarind (Tamarindus indica

L.)’, Jour. Agri. Food Chem. 42(12), 2671–4.

VENNILA P  and KINGSLEY A R P  (2000), ‘Tamarind Concentrate’, Spice India, 13(9), 6. VON  MAYDELL H  J  (1986),  Trees  and  Shrubs of  Sahel.  Their  Characteristics  and  Uses. Deutsche Gesellschaft fu¨ r Technische Zusammenarbeit, Eschborn, Germany.

YORK W S, HARVEY L  K, GUILLEN R, ALBERSHEIM P  and DARVILL  A G  (1993), ‘Structural analysis  of  tamarind  seed  xyloglucan  oligosaccharides  using  beta-galactosidasic digestion and spectroscopic methods, Carbohyd Res., 248, 285–301.

ZHANG Y and HO, C T (1990), ‘Volatile components of Tamarind’. Jour. Ess. Oil Res., 21:


Politica de confidentialitate



Vizualizari: 773
Importanta: rank

Comenteaza documentul:

Te rugam sa te autentifici sau sa iti faci cont pentru a putea comenta

Creaza cont nou

Termeni si conditii de utilizare | Contact
© SCRIGROUP 2022 . All rights reserved

Distribuie URL

Adauga cod HTML in site