Scrigroup - Documente si articole

     

HomeDocumenteUploadResurseAlte limbi doc
BulgaraCeha slovacaCroataEnglezaEstonaFinlandezaFranceza
GermanaItalianaLetonaLituanianaMaghiaraOlandezaPoloneza
SarbaSlovenaSpaniolaSuedezaTurcaUcraineana

AdministrationAnimalsArtBiologyBooksBotanicsBusinessCars
ChemistryComputersComunicationsConstructionEcologyEconomyEducationElectronics
EngineeringEntertainmentFinancialFishingGamesGeographyGrammarHealth
HistoryHuman-resourcesLegislationLiteratureManagementsManualsMarketingMathematic
MedicinesMovieMusicNutritionPersonalitiesPhysicPoliticalPsychology
RecipesSociologySoftwareSportsTechnicalTourismVarious

The Gauss Rifle: A Magnetic Linear Accelerator

engineering



+ Font mai mare | - Font mai mic



The Gauss Rifle:

A Magnetic Linear Accelerator

This very simple toy uses a magnetic chain reaction to launch a steel marble at a target at high speed. The toy is very simple to build, going together in minutes, and is very simple to understand and explain, and yet fascinating to watch and to use.



The materials are simple. We need a wooden ruler that has a groove in the top in which a steel ball can roll easily. Any piece of wood or aluminum or brass with a groove will work. We chose the ruler because they are easy to find around the house or at school or at a local stationery store.

We need some sticky tape. Again, almost any kind will do. Here we use Scotch brand transparent tape, but vinyl electrical tape works just as well.

We need four magnets. Most any type will do, but the stronger the magnets are, the faster the balls will go. Here we use the super strong gold-plated neodymium-iron-boron magnets we have made available in our catalog for the other projects. They work great.

We will also need nine steel balls, with a diameter that is a close match to the height of the magnets. We use 5/8 inch diameter nickel plated steel balls from our catalog.

The only tool we will need is a sharp knife for trimming the tape.

We start by taping the first magnet to the ruler at the 2.5 inch mark. The distance is somewhat arbitrary -- we wanted to get all four magnets on a one foot ruler. Feel free to experiment with the spacing later.

With the sharp knife, trim off any excess tape. Be careful, since the knife will be strongly attracted to the magnet.

It is very important that you keep the magnets from jumping together. They are made of a brittle sintered material that shatters like a ceramic. Tape the ruler to the table temporarily, so that it doesn't jump up to the next magnet as you tape the second magnet to the ruler.

Continue taping the magnets to the ruler, leaving 2.5 inches between the magnets.

When all four magnets are taped to the ruler, it is time to load the gauss rifle with the balls.

To the right of each magnet, place two steel balls. Arrange a target to the right of the device, so the ball does not roll down the street and get lost.

To fire the gauss rifle, set a steel ball in the groove to the left of the leftmost magnet. Let the ball go. If it is close enough to the magnet, it will start rolling by itself, and hit the magnet.

When the gauss rifle fires, it will happen too fast to see. The ball on the right will shoot away from the gun, and hit the target with considerable force. Our one foot long version is designed so the speed is not enough to hurt someone, and you can use your hand or foot as a target.

How does it do that?

When you release the first ball, it is attracted to the first magnet. It hits the magnet with a respectable amount of force, and a kinetic energy we will call '1 unit'.

The kinetic energy of the ball is transfered to the magnet, and then to the ball that is touching it on the right, and then to the ball that is touching that one. This transfer of kinetic energy is familiar to billiards players -- when the cue ball hits another ball, the cue ball stops and the other ball speeds off.

The third ball is now moving with a kinetic energy of 1 unit. But it is moving towards the second magnet. It picks up speed as the second magnet pulls it closer. When it hits the second magnet, it is moving nearly twice as fast as the first ball.

The third ball hits the magnet, and the fifth ball starts to move with a kinetic energy of 2 units. It speeds up as it nears the third magnet, and hits with of 3 units of kinetic energy. This causes the seventh ball to speed off towards the last magnet. As it gets drawn to the last magnet, it speeds up to 4 units of kinetic energy.

The kinetic energy is now transfered to the last ball, which speeds off at 4 units, to hit the target.



Politica de confidentialitate | Termeni si conditii de utilizare



DISTRIBUIE DOCUMENTUL

Comentarii


Vizualizari: 1778
Importanta: rank

Comenteaza documentul:

Te rugam sa te autentifici sau sa iti faci cont pentru a putea comenta

Creaza cont nou

Termeni si conditii de utilizare | Contact
© SCRIGROUP 2024 . All rights reserved